Statistics for objects with shared identities

I want to know if there exist statistics for objects that may “share” properties and identities. More specifically I’m interested in this principle:

Properties of objects aren’t contained in specific objects. Instead, there’s a common pool that contains all properties. Objects take their properties from this pool. But the pool isn’t infinite. If one object takes 80% of a certain property from the pool, other objects can take only 20% of that property.

How can an object take away properties from other objects? What does it mean?

Example 1. Imagine you have two lamps. Each has 50 points of brightness. You destroy one of the lamps. Now the remaining lamp has 100 points of brightness. Because brightness is limited and shared between the two lamps.

Example 2. Imagine there are multiple interpretations of each object. You study the objects’ sizes. Interpretation of one object affects interpretations of all other objects. If you choose “extremely big” interpretation for one object, then you need to choose smaller interpretations for other objects. Because size is limited and shared between the objects.

Different objects may have different “weights”, determining how much of the common property they get.

Do you know any statistical concepts that describe situations when objects share properties like this?

Analogy with probability

I think you can compare the common property to probability:

  • The total amount of the property is fixed. New objects don’t add or subtract from the total amount.

  • “Weight” of an object is similar to prior probability. (Bayes’ theorem)

  • The amount of property an object gets depends on the presence/​absence of other objects and their weights. This is similar to conditional probability.

But I never seen Bayes’ rule used for something like this: for distributing a property between objects.

Probability 2

You can apply the same principle of “shared properties/​identities” to probability itself.

Example. Imagine you throw 4 weird coins. Each coin has a ~25% chance to land heads or tails and a ~75% chance to merge with some other coin. At least one coin always remains. Not sure how the outcome of “merged” coins is determined, different rules are possible.

Here’s an illustration of some possible outcomes of throwing 4 weird coins: image. Disappeared coins affect the remaining ones in some way. (If disappeared coins don’t affect the remaining ones then “disappeared” is just the third state of the coin, it’s the most boring possibility.)

This system as a whole has the probability 100% to land heads or tails (you’ll see at least one heads or tails). But each particular coin has a weird probability that doesn’t add up to 100%.

Imagine you take away one coin from the system. You throw the remaining three. Now each coin has a ~33% chance to land heads or tails and a ~67% chance to merge with some other coin.

You can compare this system of weird coins to a Markov process. A weird coin has a probability to land heads or tails, but also a probability to merge with another coin. This “merge probability” is similar to transition probability in a Markov process. But we have an additional condition compared to general Markov chains: the probabilities of staying in a state (of keeping your identity) of different states should add up to 100%.

Do you know statistics that can describe events with mixed identities? For example, how to calculate conditional probabilities for the weird coins? What if the coins have different “weights” (take more of the probability)? By the way, I don’t imply that any “new math” should be necessary for that.


Motivation (in general)

  • Imagine a system in which elements “share” properties (compete for limited amounts of a property) and identities (may transform into each other). Do you want to know statistics of such system?

I do. Because shared properties/​identities of elements mean that elements are more correlated with each other. If you study a system, that’s very convenient. So, in a way, a system with shared properties/​identities is the best system to study. So, it’s important to study it as the best possible case.

  • Are you interested in objects that share properties and identities?

I am. Because in mental states things often have mixed properties/​identities. If you can model it, that’s cool.

Priming is a phenomenon whereby exposure to one stimulus influences a response to a subsequent stimulus, without conscious guidance or intention. The priming effect refers to the positive or negative effect of a rapidly presented stimulus (priming stimulus) on the processing of a second stimulus (target stimulus) that appears shortly after.”

It’s only one of the effects of this. However, you don’t even need to think about any of the “special” psychological effects. Because what I said is self-evident.

  • Are you interested in objects that share properties and identities? (2)

I am. At least because of quantum mechanics where something similar is happening: see quantum entanglement.

Note: the connection with QM isn’t a conjecture, but it doesn’t imply any insight about QM. It’s like saying that map of a city and a network of computers may be examples of a graph. You don’t need deep knowledge about cartography or networks to draw the connection.

  • There are two important ways to model uncertainty: probability and fuzzy logic. One is used for prediction, another is used for describing things. Do you want to know other ways to model uncertainty for predictions/​descriptions?

I do! What I describe would be a mix between modeling uncertain predictions and uncertain descriptions. This could unify predicting and describing things.

  • Are you interested in objects competing for properties and identities? (3)

I am. Because it is very important for the future of humanity. For understanding what is true happiness. Those “competing objects” are humans.

Do you want to live forever? In what way? Do you want to experience any possible experience? Do you want to maximally increase the amount of sentient beings in the Universe? Answering all those questions may require trying to define “identity”, finding boundaries between your identity and identities of other people, splitting the universe of experiences between different people. Otherwise you risk to run into problems: for example, if you experience everything, then you may lose your identity. If you want to live forever, you probably need to reconceptualize your identity. And avoid (or embrace) dangers of losing your identity after infinite amounts of time.

Are your answers different from mine? Are you interested?

Motivation (specific)

A more specific motivation: there are Bayesian and probabilistic theories of perception, pattern recognition. Hidden Markov models are used for recognizing speech and many other things.

And I do believe that perception is based on probability… but I believe it’s based on a special (not very standard) usage of probability. I believe that systems with shared identities are relevant here.

So, I want to know some general properties of such systems to verify/​falsify my idea or explore the implications of the idea.