Okay, so by “wavefunction as a classical mathematical object” you mean a vector in Hilbert space? In that case, what do you mean by the adjective “classical”?
Okay, so by “wavefunction as a classical mathematical object” you mean a vector in Hilbert space?
Yes.
In that case, what do you mean by the adjective “classical”?
There’s a lot of variants of math; e.g. homotopy type theory, abstract stone duality, nonstandard analysis, etc.. Maybe one could make up a variant of math that could embed wavefunctions more natively.
Hmmm, I think there’s still some linguistic confusion remaining. While we certainly need to invent new mathematics to describe quantum field theory, are you making the stronger claim that there’s something “non-native” about the way that wavefunctions in non-relativistic quantum mechanics are described using functional analysis? Especially since a lot of modern functional analysis theory was motivated by quantum mechanics, I don’t see how a new branch of math could describe wavefunctions more natively.
Measure theory and probability theory was developed to describe stochasticity and uncertainty, but they formalize it in many-worlds terms, closely analogous to how the wavefunction is formalized in quantum mechanics. If one takes the wavefunction formalism literally to the point of believing that quantum mechanics must have many worlds, it seems natural to take the probability distribution formalism equally literally to the point of believing that probability must have many worlds too. Or well, you can have a hidden variables theory of probability too, but the point is it seems like you would have to abandon True Stochasticity.
True Stochasticity vs probability distributions provides a non-quantum example of the non-native embedding, so if you accept the existence of True Stochasticity as distinct from many worlds of simultaneous possibility or ignorance of hidden variables, then that provides a way to understand my objection. Otherwise, I don’t yet know a way to explain it, and am not sure one exists.
As for the case of how a new branch of math could describe wavefunctions more natively, there’s a tradeoff where you can put in a ton of work and philosophy to make a field of math that describes an object completely natively, but it doesn’t actually help the day-to-day work of a mathematician, and it often restricts the tools you can work with (e.g. no excluded middle and no axiom of choice), so people usually don’t. Instead they develop their branch of math within classical math with some informal shortcuts.
Okay, so by “wavefunction as a classical mathematical object” you mean a vector in Hilbert space? In that case, what do you mean by the adjective “classical”?
Yes.
There’s a lot of variants of math; e.g. homotopy type theory, abstract stone duality, nonstandard analysis, etc.. Maybe one could make up a variant of math that could embed wavefunctions more natively.
Hmmm, I think there’s still some linguistic confusion remaining. While we certainly need to invent new mathematics to describe quantum field theory, are you making the stronger claim that there’s something “non-native” about the way that wavefunctions in non-relativistic quantum mechanics are described using functional analysis? Especially since a lot of modern functional analysis theory was motivated by quantum mechanics, I don’t see how a new branch of math could describe wavefunctions more natively.
Measure theory and probability theory was developed to describe stochasticity and uncertainty, but they formalize it in many-worlds terms, closely analogous to how the wavefunction is formalized in quantum mechanics. If one takes the wavefunction formalism literally to the point of believing that quantum mechanics must have many worlds, it seems natural to take the probability distribution formalism equally literally to the point of believing that probability must have many worlds too. Or well, you can have a hidden variables theory of probability too, but the point is it seems like you would have to abandon True Stochasticity.
True Stochasticity vs probability distributions provides a non-quantum example of the non-native embedding, so if you accept the existence of True Stochasticity as distinct from many worlds of simultaneous possibility or ignorance of hidden variables, then that provides a way to understand my objection. Otherwise, I don’t yet know a way to explain it, and am not sure one exists.
As for the case of how a new branch of math could describe wavefunctions more natively, there’s a tradeoff where you can put in a ton of work and philosophy to make a field of math that describes an object completely natively, but it doesn’t actually help the day-to-day work of a mathematician, and it often restricts the tools you can work with (e.g. no excluded middle and no axiom of choice), so people usually don’t. Instead they develop their branch of math within classical math with some informal shortcuts.