Note: the Filter might not exist. In a nutshell, the Fermi paradox can be dissolved by realizing that “average number of civilizations per galaxy” is less important than “probability of galaxy containing single civilization”. (Note: depending on your anthropics, this may or may not actually dissolve the paradox.)
Wait. You don’t know enough chemical processes if you think they all (or even most) terminate naturally, except when their energy source runs out. I find it easy to believe that chemical processes much like the ones I comprise will be functioning many eons in the future. What part of “self-replicating DNA-like organization of chemical compounds” do you claim has a natural termination point?
There aren’t any chemical processes for which this is not a problem. For complex ones like DNA, it is more of a problem rather than less because the absence of any one of the multiple required inputs will do it. A process needs a system, and all the systems with which we are experienced have limits. We also have several known candidates for catastrophic disruption to DNA-like processes, in the form of X-risk.
The problem boils down to whether we can keep jumping up to a larger system level before we deplete or disrupt the one we currently occupy; I see no reason to assume this will always succeed, even if the probability turns in our favor.
This is not directly related to the post, but while reading the paper a thought struck me and I wanted to get it down:
We apply the mediocrity assumption to the Earth among planets; we should also apply it to intelligence among processes.
The only intelligence we know of currently runs on chemical processes.
All chemical processes I know of naturally terminate.
The mediocrity assumption therefore says an intelligence process will also naturally terminate.
I therefore suspect a late filter.
Note: the Filter might not exist. In a nutshell, the Fermi paradox can be dissolved by realizing that “average number of civilizations per galaxy” is less important than “probability of galaxy containing single civilization”. (Note: depending on your anthropics, this may or may not actually dissolve the paradox.)
Yes, I should amend that to “I suspect a late filter, if one exists.”
Wait. You don’t know enough chemical processes if you think they all (or even most) terminate naturally, except when their energy source runs out. I find it easy to believe that chemical processes much like the ones I comprise will be functioning many eons in the future. What part of “self-replicating DNA-like organization of chemical compounds” do you claim has a natural termination point?
There aren’t any chemical processes for which this is not a problem. For complex ones like DNA, it is more of a problem rather than less because the absence of any one of the multiple required inputs will do it. A process needs a system, and all the systems with which we are experienced have limits. We also have several known candidates for catastrophic disruption to DNA-like processes, in the form of X-risk.
The problem boils down to whether we can keep jumping up to a larger system level before we deplete or disrupt the one we currently occupy; I see no reason to assume this will always succeed, even if the probability turns in our favor.