Post-Hayek and algorithmic information theory, we recognize that information-bearing codes can be computed (and in particular, ideas evolved from the interaction of people with each other over many lifetimes), which are
(a) not feasibly rederivable from first principles,
(b) not feasibly and accurately refutable (given the existence of the code to be refuted)
(c) not even feasibly and accurately justifiable (given the existence of the code to justify)
(“Feasibility” is a measure of cost, especially the costs of computation and empircal experiment. “Not feasibly” means “cost not within the order of magnitude of being economically efficient”: for example, not solvable within a single human lifetime. Usually the constraints are empirical rather than merely computational).
(a) and (b) are ubiqitous among highly evolved systems of interactions among richly encoded entities (whether that information is genetic or memetic). (c) is rarer, since many of these interpersonal games are likely no more diffult than NP-complete: solutions cannot be feasibly derived from scratch, but known solutions can be verified in feasible time. However, there are many problems, especially empirical problems requiring a “medical trial” over one or more full lifetimes, that don’t even meet (c): it’s infeasible to create a scientifically repeatable experiment. For the same reason a scientific experiment cannot refute any tradition dealing with interpersonal problems (b), because it may not have run over enough lifetimes, and we don’t know which computational or empirical class the interpersonal problem solved by the tradition falls into. One can scientifically refute traditional claims of a non-interpersonal nature, e.g. “God created the world in 4004 B.C.”, but one cannot accurately refute metaphorical interpretations or imperative statements which apply to interpersonal relationships.
I tend to think that Nick is overstating his case somewhat in this essay, but it seems hard to deny that there must be many truths that are not feasibly rederivable from first principles, and highly evolved traditions related to to interpersonal behavior is a likely place to find them. Additionally, I think the kind of “re-derivations from first principles” that we can actually do often just amount to handwaving (“Courage” in the OP is a good example of this) and offers rather little evidence that the rule or heuristic we’re trying to derive is actually correct. Overall I caution against being overconfident about deriving things from first principles.
I’ve seen that essay linked a few times and finally took the time to read it carefully. Some thoughts, for what they’re worth:
What exactly is a code? (Apparently they can be genetic or memetic, information theory and Hayek both have something to say about them, and social traditions are instances of them.) How do you derive, refute or justify a code?
There are apparently evolved memetic codes that solve interpersonal problems—how do we know that memetic evolution selects for good solutions to interpersonal problems, and that it doesn’t select even more strongly for something useless or harmful, like memorability or easy transmission to children or appeal to the kinds of people in the best position to spread their ideas to others or making one feel good? Why isn’t memetic evolution as much of anamoralAzathoth as biological evolution? The results of memetic evolution are just the memes that were best at surviving and reproducing themselves. These generally have no reason to be objectively true. I’m not convinced that there’s any reason they should be intersubjectively true (socially beneficial) either. Also, selection among entire social systems seems to require group selection.
And granted that the traditions that are the results of the process of memetic/cultural evolution contain valuable truths, are those truths in the actual content of the traditions, or are they just in what we can infer from the fact that these were the particular traditions that resulted from the process?
I’m not convinced that there’s any reason they should be intersubjectively true (socially beneficial) either.
It seems clear to me that memes are socially beneficial in the sense that we’re much better off with the memes that we actually have (including traditional moralities, laws, etc.) than no memes, or a set of random memes. And also that it would be quite hard to find a set of memes that would do as well, if we were to start over from scratch. I’m not quite sure how to explain this, or answer your other questions, but perhaps Nick has given these issues more thought. He recently reposted the essay to his blog, so commenting there might be a good way to draw his attention.
there must be many truths that are not feasibly rederivable from first principles, and highly evolved traditions related to to interpersonal behavior is a likely place to find them
Yes. Hence the “don’t spend more than a few seconds trying” implication of it being a 5 second skill.
Additionally, I think the kind of “re-derivations from first principles” that we can actually do often just amount to handwaving (“Courage” in the OP is a good example of this) and offers rather little evidence that the rule or heuristic we’re trying to derive is actually correct.
Handwaving or not, habitually looking at actual specific mechanisms and actual math has been hugely informative to me for what things actually matter; Is this thing actually true, What are the limits, etc.
It’s not like I just handwaved up something that looked like the classical concept of courage and then said “oh look, now we can be reckless”. No. I gave a specific example of what decision theory says is best in a particular case. We got actual narrow advice with explicit domain bounds, which overrides whatever we thought before. I omitted some details, and reported it in english, so it seems a bit fuzzy, but I did do the math and warn the reader to do the math for themselves to fill in the blanks. If you have some specific flaw with what I laid out, I’d like to hear about it.
I couldn’t figure out how to translate your English into math, or see how to do the math myself. For the reasons stated in Nick’s essay, I’m skeptical that it is feasible to fully “do the math” in problems like these. I suspect you may have done the math incorrectly, or applied simplifying assumptions that are not safe to make. My other top-level comment pointed out one important consideration that your math probably ignored.
I do think it’s useful to look at actual specific mechanisms and actual math, but I worry it’s easy to forget that the mechanism we’re looking at is just one among many that exist in reality and the math inevitably involves many simplifying assumptions or could just be wrong, and become more confident in our conclusions than we should. Based on your post (“you can pull out the equations to verify if you like” instead of “here’s my math, please help me check it for mistakes and bad assumptions”) I think this worry is justified.
I couldn’t figure out how to translate your English into math, or see how to do the math myself.
Based on your post (“you can pull out the equations to verify if you like” instead of “here’s my math, please help me check it for mistakes and bad assumptions”) I think this worry is justified.
Sorry. I had some math in there for the solder and submarine example, and I’ve got the math somewhere for the courage thing, but I decided that the math didn’t add much value. Should I leave the math in where it exists next time? Or put it back in now even?
If I get around to it, I’ll post some equations in the comments.
I can see how courage might be a bad example. The revealing skill level thing is potentially important. I probably missed some stuff too. Maybe I should break that into another post, because deriving that sort of thing from the equations is an interesting thing to do that could use a lot more scrutiny.
I do think it’s useful to look at actual specific mechanisms and actual math, but I worry it’s easy to forget that the mechanism we’re looking at is just one among many that exist in reality and the math inevitably involves many simplifying assumptions or could just be wrong, and become more confident in our conclusions than we should.
Good point. Simplifying assumptions could sink us, as could overconfidence. I reckon a good way to figure it out is to test it and see how often the quick scribbly math fails us. My particular approach been quite useful and generally accurate, but since I can’t yet see from first principles which bits of my habit are the important ones, all I can do is report my success, describe my procedure, and urge people to try it themselves, so that they’ll figure out the important bits too. (hence the “don’t take my word for it go look at the difference”, and the meta example at the end)
Anyways, I know of no procedure better than actually trying to comprehend the reason for things, when it exists. Not looking at the reasons seems like a bad idea (seems may be an understatement. I’ve seen lots of people fail or push in the wrong direction when a bit of From First Principles would have saved them).
Yes, please post your math, either in the comments here or in another post, depending on how involved it is.
I reckon a good way to figure it out is to test it and see how often the quick scribbly math fails us.
How would you test whether your math for “courage” failed you? (Presumably, if it’s wrong, then you’d fail to maximize expected utility, but how could you tell that?)
I’ve seen lots of people fail or push in the wrong direction when a bit of From First Principles would have saved them).
Do you have any examples of this in the sphere of interpersonal behavior?
Yes, please post your math, either in the comments here or in another post, depending on how involved it is.
will do later. Too busy to dig it up now.
How would you test whether your math for “courage” failed you? (Presumably, if it’s wrong, then you’d fail to maximize expected utility, but how could you tell that?)
Look at other people, and your past self I guess? Are you doing better than you would have? Does it look like it’s got to do with risk strategy? Not rigorous or anything, but you can get evidence. The courage thing is built on expected utility being measurable, so it shouldn’t be too hard. Won’t be easy either, though.
Do you have any examples of this in the sphere of interpersonal behavior?
Not off the top of my head. I don’t have a good solid set of equations or even rules for interpersonal stuff, so I wouldn’t expect to recognize it. Also the bottleneck in interpersonal stuff is usually something other than using models blindly.
Nick Szabo’s Objective Versus Intersubjective Truth seem relevant here:
I tend to think that Nick is overstating his case somewhat in this essay, but it seems hard to deny that there must be many truths that are not feasibly rederivable from first principles, and highly evolved traditions related to to interpersonal behavior is a likely place to find them. Additionally, I think the kind of “re-derivations from first principles” that we can actually do often just amount to handwaving (“Courage” in the OP is a good example of this) and offers rather little evidence that the rule or heuristic we’re trying to derive is actually correct. Overall I caution against being overconfident about deriving things from first principles.
I’ve seen that essay linked a few times and finally took the time to read it carefully. Some thoughts, for what they’re worth:
What exactly is a code? (Apparently they can be genetic or memetic, information theory and Hayek both have something to say about them, and social traditions are instances of them.) How do you derive, refute or justify a code?
There are apparently evolved memetic codes that solve interpersonal problems—how do we know that memetic evolution selects for good solutions to interpersonal problems, and that it doesn’t select even more strongly for something useless or harmful, like memorability or easy transmission to children or appeal to the kinds of people in the best position to spread their ideas to others or making one feel good? Why isn’t memetic evolution as much of an amoral Azathoth as biological evolution? The results of memetic evolution are just the memes that were best at surviving and reproducing themselves. These generally have no reason to be objectively true. I’m not convinced that there’s any reason they should be intersubjectively true (socially beneficial) either. Also, selection among entire social systems seems to require group selection.
And granted that the traditions that are the results of the process of memetic/cultural evolution contain valuable truths, are those truths in the actual content of the traditions, or are they just in what we can infer from the fact that these were the particular traditions that resulted from the process?
It seems clear to me that memes are socially beneficial in the sense that we’re much better off with the memes that we actually have (including traditional moralities, laws, etc.) than no memes, or a set of random memes. And also that it would be quite hard to find a set of memes that would do as well, if we were to start over from scratch. I’m not quite sure how to explain this, or answer your other questions, but perhaps Nick has given these issues more thought. He recently reposted the essay to his blog, so commenting there might be a good way to draw his attention.
Yes. Hence the “don’t spend more than a few seconds trying” implication of it being a 5 second skill.
Handwaving or not, habitually looking at actual specific mechanisms and actual math has been hugely informative to me for what things actually matter; Is this thing actually true, What are the limits, etc.
It’s not like I just handwaved up something that looked like the classical concept of courage and then said “oh look, now we can be reckless”. No. I gave a specific example of what decision theory says is best in a particular case. We got actual narrow advice with explicit domain bounds, which overrides whatever we thought before. I omitted some details, and reported it in english, so it seems a bit fuzzy, but I did do the math and warn the reader to do the math for themselves to fill in the blanks. If you have some specific flaw with what I laid out, I’d like to hear about it.
I couldn’t figure out how to translate your English into math, or see how to do the math myself. For the reasons stated in Nick’s essay, I’m skeptical that it is feasible to fully “do the math” in problems like these. I suspect you may have done the math incorrectly, or applied simplifying assumptions that are not safe to make. My other top-level comment pointed out one important consideration that your math probably ignored.
I do think it’s useful to look at actual specific mechanisms and actual math, but I worry it’s easy to forget that the mechanism we’re looking at is just one among many that exist in reality and the math inevitably involves many simplifying assumptions or could just be wrong, and become more confident in our conclusions than we should. Based on your post (“you can pull out the equations to verify if you like” instead of “here’s my math, please help me check it for mistakes and bad assumptions”) I think this worry is justified.
Sorry. I had some math in there for the solder and submarine example, and I’ve got the math somewhere for the courage thing, but I decided that the math didn’t add much value. Should I leave the math in where it exists next time? Or put it back in now even?
If I get around to it, I’ll post some equations in the comments.
I can see how courage might be a bad example. The revealing skill level thing is potentially important. I probably missed some stuff too. Maybe I should break that into another post, because deriving that sort of thing from the equations is an interesting thing to do that could use a lot more scrutiny.
Good point. Simplifying assumptions could sink us, as could overconfidence. I reckon a good way to figure it out is to test it and see how often the quick scribbly math fails us. My particular approach been quite useful and generally accurate, but since I can’t yet see from first principles which bits of my habit are the important ones, all I can do is report my success, describe my procedure, and urge people to try it themselves, so that they’ll figure out the important bits too. (hence the “don’t take my word for it go look at the difference”, and the meta example at the end)
Anyways, I know of no procedure better than actually trying to comprehend the reason for things, when it exists. Not looking at the reasons seems like a bad idea (seems may be an understatement. I’ve seen lots of people fail or push in the wrong direction when a bit of From First Principles would have saved them).
Yes, please post your math, either in the comments here or in another post, depending on how involved it is.
How would you test whether your math for “courage” failed you? (Presumably, if it’s wrong, then you’d fail to maximize expected utility, but how could you tell that?)
Do you have any examples of this in the sphere of interpersonal behavior?
will do later. Too busy to dig it up now.
Look at other people, and your past self I guess? Are you doing better than you would have? Does it look like it’s got to do with risk strategy? Not rigorous or anything, but you can get evidence. The courage thing is built on expected utility being measurable, so it shouldn’t be too hard. Won’t be easy either, though.
Not off the top of my head. I don’t have a good solid set of equations or even rules for interpersonal stuff, so I wouldn’t expect to recognize it. Also the bottleneck in interpersonal stuff is usually something other than using models blindly.