Static fields sure ACT like they’re radiated by charges
I likely disagree with that, depending on your meaning of “radiated”. I’d say they are “attached” to charges, acausally (i.e. not respecting the light cone). That’s what the static field approximation is all about.
Then there is the quasi-static case, where you neglect the radiation. The java applet I linked shows what happens there: the disturbance in the static field due to acceleration of charges propagates at the speed of light.
I likely disagree with that, depending on your meaning of “radiated”. I’d say they are “attached” to charges, acausally (i.e. not respecting the light cone). That’s what the static field approximation is all about.
Then there is the quasi-static case, where you neglect the radiation. The java applet I linked shows what happens there: the disturbance in the static field due to acceleration of charges propagates at the speed of light.
I’ll think more about your other arguments.