Static fields sure ACT like they’re radiated by charges - same causal structure (see my recent post about causality and static fields), same 1/r^2. And of course we always think of the radiative fields as being radiated by charges. So that covers both cases. Based on what actual lines of reasoning do we not consider static fields to be radiated by charges?
With your example, why do we say the field lines are attached? It certainly acts like it’s attached whenever there are no wormholes around and as long as charge is conserved, that’s for sure. But that might be a cause or it might be an effect. And when you dicky around with the assumptions connecting them, it may or may not end up being on the fundamental side of things.
Like… forget wormholes for a moment. Let’s go to a counterfactual—imagine there was a weak interaction that violated conservation of charge. Assuming it actually happened, against all expectations, what do you think the electrical field would look like? If you trace it causally, what you see is unusual but you have no trouble—it’s only in the spacelike cuts that it looks ugly. And physics really really doesn’t act like it’s implemented on spacelike cuts.
Static fields sure ACT like they’re radiated by charges
I likely disagree with that, depending on your meaning of “radiated”. I’d say they are “attached” to charges, acausally (i.e. not respecting the light cone). That’s what the static field approximation is all about.
Then there is the quasi-static case, where you neglect the radiation. The java applet I linked shows what happens there: the disturbance in the static field due to acceleration of charges propagates at the speed of light.
Static fields sure ACT like they’re radiated by charges - same causal structure (see my recent post about causality and static fields), same 1/r^2. And of course we always think of the radiative fields as being radiated by charges. So that covers both cases. Based on what actual lines of reasoning do we not consider static fields to be radiated by charges?
With your example, why do we say the field lines are attached? It certainly acts like it’s attached whenever there are no wormholes around and as long as charge is conserved, that’s for sure. But that might be a cause or it might be an effect. And when you dicky around with the assumptions connecting them, it may or may not end up being on the fundamental side of things.
Like… forget wormholes for a moment. Let’s go to a counterfactual—imagine there was a weak interaction that violated conservation of charge. Assuming it actually happened, against all expectations, what do you think the electrical field would look like? If you trace it causally, what you see is unusual but you have no trouble—it’s only in the spacelike cuts that it looks ugly. And physics really really doesn’t act like it’s implemented on spacelike cuts.
I likely disagree with that, depending on your meaning of “radiated”. I’d say they are “attached” to charges, acausally (i.e. not respecting the light cone). That’s what the static field approximation is all about.
Then there is the quasi-static case, where you neglect the radiation. The java applet I linked shows what happens there: the disturbance in the static field due to acceleration of charges propagates at the speed of light.
I’ll think more about your other arguments.