I definitely think machine learning topics are useful. Given that there’s so much stuff out there and you can only cover a small fraction of it, maybe recent machine learning topics are a point of comparative advantage, even. The best textbook on set theory is probably pretty good already.
Another service that could take advantage of pre-existing textbooks is short summaries, designed to give people just enough of a taste to make an informed decision about reading said good textbook. Probably easier than developing a course on algorithmic information theory, or circuit complexity, or whatever.
maybe recent machine learning topics are a point of comparative advantage
Do you mean recent ML topics related to AI safety, or just recent ML topics?
RAISE is already working on the former, it’s another course which we internally call “main track”. Right now it has the following umbrella topics: Inverse Reinforcement Learning; Iterated Distillation and Amplification; Corrigibility. See https://www.aisafety.info/online-course
Seems interesting, thanks!
I definitely think machine learning topics are useful. Given that there’s so much stuff out there and you can only cover a small fraction of it, maybe recent machine learning topics are a point of comparative advantage, even. The best textbook on set theory is probably pretty good already.
Another service that could take advantage of pre-existing textbooks is short summaries, designed to give people just enough of a taste to make an informed decision about reading said good textbook. Probably easier than developing a course on algorithmic information theory, or circuit complexity, or whatever.
Do you mean recent ML topics related to AI safety, or just recent ML topics?
RAISE is already working on the former, it’s another course which we internally call “main track”. Right now it has the following umbrella topics: Inverse Reinforcement Learning; Iterated Distillation and Amplification; Corrigibility. See https://www.aisafety.info/online-course