What is and isn’t simulated to a high degree of detail can be determined dynamically. If people decide they want to investigate a hill, some system watching the sim can notice that and send a signal that the sim needs to make the hill observations correspond with quantum/etc. physics. This shouldn’t be hard to do. For instance, if the theory predicts observation X +/- Y, you can generate some random numbers centered around X with std. dev. Y. Or you can make them somewhat different if the theory is wrong and to account for model uncertainty.
If the scientists would do lots of experiments that are connected in complex ways such that consistency requires them to come out with certain complex relationships, you’d need to get somewhat more fancy with faking the measurements. Worst case, you can actually do a brute-force sim of that part of physics for the brief period required. And yeah, as you say, you can always revert to a previous state if you screw up and the scientists find something amiss, though you probably wouldn’t want to do that too often.
There’s no guarantee (if we are in a sim) that the laws of physics are the same in our universe as they are in baseline; we may, in fact, have laws of physics specifically designed to be easier to compute.
Worst case, you can actually do a brute-force sim of that part of physics for the brief period required.
This is kind of where the trouble starts to come in. What happens when the scientist, instead of looking at hills in the present, turns instead to look at historical records of hills a hundred years in the past?
If he has actually found some complex interaction that the simplified model fails to cover, then he has a chance of finding evidence of living in a simulation; yes, the simulation can be rolled back a hundred years and then re-run from that point onwards, but is that really more computationally efficient than just running the full physics all the time? (Especially if you have to regularly keep going back to update the model).
This is where his fellow scientists call him a “crackpot” because he can’t replicate any of his experimental findings. ;)
More seriously, the sim could modify his observations to make him observe the right things. For instance, change the photons entering his eyes to be in line with what they should be, change the historical records a la 1984, etc. Or let him add an epicycle to his theory to account for the otherwise unexplainable results.
In practice, I doubt atomic-level effects are ever going to produce clearly observable changes outside of physics labs, so 99.99999% of the time the simulators wouldn’t have to worry about this as long as they simulated macroscopic objects to enough detail.
In practice, I doubt atomic-level effects are ever going to produce clearly observable changes outside of physics labs, so 99.99999% of the time the simulators wouldn’t have to worry about this as long as they simulated macroscopic objects to enough detail.
Well, yes, I’m not saying that this would make it easy to discover evidence that we are living in a simulation. It would simply make it possible to do so.
What is and isn’t simulated to a high degree of detail can be determined dynamically. If people decide they want to investigate a hill, some system watching the sim can notice that and send a signal that the sim needs to make the hill observations correspond with quantum/etc. physics. This shouldn’t be hard to do. For instance, if the theory predicts observation X +/- Y, you can generate some random numbers centered around X with std. dev. Y. Or you can make them somewhat different if the theory is wrong and to account for model uncertainty.
If the scientists would do lots of experiments that are connected in complex ways such that consistency requires them to come out with certain complex relationships, you’d need to get somewhat more fancy with faking the measurements. Worst case, you can actually do a brute-force sim of that part of physics for the brief period required. And yeah, as you say, you can always revert to a previous state if you screw up and the scientists find something amiss, though you probably wouldn’t want to do that too often.
SMBC
This is kind of where the trouble starts to come in. What happens when the scientist, instead of looking at hills in the present, turns instead to look at historical records of hills a hundred years in the past?
If he has actually found some complex interaction that the simplified model fails to cover, then he has a chance of finding evidence of living in a simulation; yes, the simulation can be rolled back a hundred years and then re-run from that point onwards, but is that really more computationally efficient than just running the full physics all the time? (Especially if you have to regularly keep going back to update the model).
This is where his fellow scientists call him a “crackpot” because he can’t replicate any of his experimental findings. ;)
More seriously, the sim could modify his observations to make him observe the right things. For instance, change the photons entering his eyes to be in line with what they should be, change the historical records a la 1984, etc. Or let him add an epicycle to his theory to account for the otherwise unexplainable results.
In practice, I doubt atomic-level effects are ever going to produce clearly observable changes outside of physics labs, so 99.99999% of the time the simulators wouldn’t have to worry about this as long as they simulated macroscopic objects to enough detail.
Well, yes, I’m not saying that this would make it easy to discover evidence that we are living in a simulation. It would simply make it possible to do so.