Worst case, you can actually do a brute-force sim of that part of physics for the brief period required.
This is kind of where the trouble starts to come in. What happens when the scientist, instead of looking at hills in the present, turns instead to look at historical records of hills a hundred years in the past?
If he has actually found some complex interaction that the simplified model fails to cover, then he has a chance of finding evidence of living in a simulation; yes, the simulation can be rolled back a hundred years and then re-run from that point onwards, but is that really more computationally efficient than just running the full physics all the time? (Especially if you have to regularly keep going back to update the model).
This is where his fellow scientists call him a “crackpot” because he can’t replicate any of his experimental findings. ;)
More seriously, the sim could modify his observations to make him observe the right things. For instance, change the photons entering his eyes to be in line with what they should be, change the historical records a la 1984, etc. Or let him add an epicycle to his theory to account for the otherwise unexplainable results.
In practice, I doubt atomic-level effects are ever going to produce clearly observable changes outside of physics labs, so 99.99999% of the time the simulators wouldn’t have to worry about this as long as they simulated macroscopic objects to enough detail.
In practice, I doubt atomic-level effects are ever going to produce clearly observable changes outside of physics labs, so 99.99999% of the time the simulators wouldn’t have to worry about this as long as they simulated macroscopic objects to enough detail.
Well, yes, I’m not saying that this would make it easy to discover evidence that we are living in a simulation. It would simply make it possible to do so.
This is kind of where the trouble starts to come in. What happens when the scientist, instead of looking at hills in the present, turns instead to look at historical records of hills a hundred years in the past?
If he has actually found some complex interaction that the simplified model fails to cover, then he has a chance of finding evidence of living in a simulation; yes, the simulation can be rolled back a hundred years and then re-run from that point onwards, but is that really more computationally efficient than just running the full physics all the time? (Especially if you have to regularly keep going back to update the model).
This is where his fellow scientists call him a “crackpot” because he can’t replicate any of his experimental findings. ;)
More seriously, the sim could modify his observations to make him observe the right things. For instance, change the photons entering his eyes to be in line with what they should be, change the historical records a la 1984, etc. Or let him add an epicycle to his theory to account for the otherwise unexplainable results.
In practice, I doubt atomic-level effects are ever going to produce clearly observable changes outside of physics labs, so 99.99999% of the time the simulators wouldn’t have to worry about this as long as they simulated macroscopic objects to enough detail.
Well, yes, I’m not saying that this would make it easy to discover evidence that we are living in a simulation. It would simply make it possible to do so.