I’d say that the ball is a sphere and consider the first point of impact (i.e. the tangency point of the plane to the sphere). Otherwise, you need to know a lot about the ball and the field where it lands.
You can compare infinite sets. Take the sets A and B, A={1,2,3,...} and B={2,3,4,...}. B is, by construction, a subset of A. There’s your comparison; yet, both are infinite sets.
What assumptions would you make for the golf ball and the field? (To keep things clear, can we define events and probabilities separately?)
I’d say that the ball is a sphere and consider the first point of impact (i.e. the tangency point of the plane to the sphere). Otherwise, you need to know a lot about the ball and the field where it lands.
You can compare infinite sets. Take the sets A and B, A={1,2,3,...} and B={2,3,4,...}. B is, by construction, a subset of A. There’s your comparison; yet, both are infinite sets.
What assumptions would you make for the golf ball and the field? (To keep things clear, can we define events and probabilities separately?)