My current guess is that logical counterfactuals are a wrong thing to focus on in decision making. They have their place in figuring out imperfect reasoning about yourself, but that’s specific to coordination with imperfect reasoners of a particular kind, not decision making itself (so should probably be done on meta level, as a symbol pushing game not working on objects of knowledge for the agent).
A trick that works well for that (I’m not sure it was much discussed) is to aim to prove that you win, given provability (validity in form of box modality) of a decision you can make, instead of aiming to discover consequences of a decision (discovering and exploiting dependencies). This way, you don’t deal with problematic consequences of non-actual decisions, only with the enacted requirements for an actual proof of winning. This also abstracts away from utility maximization, so there is just winning and not winning (and the issue of how to get back to maximization is more difficult than in the dependency-based approaches, it becomes more like bargaining).
I’m having difficulty following this comment. I don’t know what you mean by a “symbol pushing game”. Also, does box modality simply refer to modal logic?
Anyway, re: problems like Perfect Parfit’s Hitchhiker, proving you win by paying still requires you to define what the predictor actually predicts. Otherwise we can’t say that a never paying agent doesn’t end up in town and hence win. So I don’t understand how this avoids the “problematic consequences of non-actual decisions”.
My current guess is that logical counterfactuals are a wrong thing to focus on in decision making. They have their place in figuring out imperfect reasoning about yourself, but that’s specific to coordination with imperfect reasoners of a particular kind, not decision making itself (so should probably be done on meta level, as a symbol pushing game not working on objects of knowledge for the agent).
A trick that works well for that (I’m not sure it was much discussed) is to aim to prove that you win, given provability (validity in form of box modality) of a decision you can make, instead of aiming to discover consequences of a decision (discovering and exploiting dependencies). This way, you don’t deal with problematic consequences of non-actual decisions, only with the enacted requirements for an actual proof of winning. This also abstracts away from utility maximization, so there is just winning and not winning (and the issue of how to get back to maximization is more difficult than in the dependency-based approaches, it becomes more like bargaining).
I’m having difficulty following this comment. I don’t know what you mean by a “symbol pushing game”. Also, does box modality simply refer to modal logic?
Anyway, re: problems like Perfect Parfit’s Hitchhiker, proving you win by paying still requires you to define what the predictor actually predicts. Otherwise we can’t say that a never paying agent doesn’t end up in town and hence win. So I don’t understand how this avoids the “problematic consequences of non-actual decisions”.