Well, its not possible today, but why hypothetical its impossible? If the system is float in the vacuum heat wont go out. Then the only problem is to transform the heat to energy again, and it might be possible someday, I guess.
What we know now about thermodynamics, tells us that it is impossible, but some ideas exist like reversible computations.
Got it. Thanks!
If the system is float in the vacuum heat wont go out.
The heat won’t escape by conduction, nor will it escape by convection. However, it will escape via radiation.
Current theme: default
Less Wrong (text)
Less Wrong (link)
Arrow keys: Next/previous image
Escape or click: Hide zoomed image
Space bar: Reset image size & position
Scroll to zoom in/out
(When zoomed in, drag to pan; double-click to close)
Keys shown in yellow (e.g., ]) are accesskeys, and require a browser-specific modifier key (or keys).
]
Keys shown in grey (e.g., ?) do not require any modifier keys.
?
Esc
h
f
a
m
v
c
r
q
t
u
o
,
.
/
s
n
e
;
Enter
[
\
k
i
l
=
-
0
′
1
2
3
4
5
6
7
8
9
→
↓
←
↑
Space
x
z
`
g
Well, its not possible today, but why hypothetical its impossible? If the system is float in the vacuum heat wont go out. Then the only problem is to transform the heat to energy again, and it might be possible someday, I guess.
What we know now about thermodynamics, tells us that it is impossible, but some ideas exist like reversible computations.
Got it. Thanks!
The heat won’t escape by conduction, nor will it escape by convection. However, it will escape via radiation.