“If only you had been around to solve the problem instead of Maxwell and Einstein, how much work could have been saved!”
Obvious != simple != easy to learn. You of all people should understand this. You seemed to understand it seven years ago, back during the days of your wild and reckless youth. To quote SitS:
“Let’s take a concrete example, the story Flowers for Algernon (later the movie Charly), by Daniel Keyes. (I’m afraid I’ll have to tell you how the story comes out, but it’s a Character story, not an Idea story, so that shouldn’t spoil it.) Flowers for Algernon is about a neurosurgical procedure for intelligence enhancement. This procedure was first tested on a mouse, Algernon, and later on a retarded human, Charlie Gordon. The enhanced Charlie has the standard science-fictional set of superhuman characteristics; he thinks fast, learns a lifetime of knowledge in a few weeks, and discusses arcane mathematics (not shown). Then the mouse, Algernon, gets sick and dies. Charlie analyzes the enhancement procedure (not shown) and concludes that the process is basically flawed. Later, Charlie dies.
That’s a science-fictional enhanced human. A real enhanced human would not have been taken by surprise. A real enhanced human would realize that any simple intelligence enhancement will be a net evolutionary disadvantage—if enhancing intelligence were a matter of a simple surgical procedure, it would have long ago occurred as a natural mutation. This goes double for a procedure that works on rats! (As far as I know, this never occurred to Keyes. I selected Flowers, out of all the famous stories of intelligence enhancement, because, for reasons of dramatic unity, this story shows what happens to be the correct outcome.)
Note that I didn’t dazzle you with an abstruse technobabble explanation for Charlie’s death; my explanation is two sentences long and can be understood by someone who isn’t an expert in the field. It’s the simplicity of smartness that’s so impossible to convey in fiction, and so shocking when we encounter it in person. All that science fiction can do to show intelligence is jargon and gadgetry. A truly ultrasmart Charlie Gordon wouldn’t have been taken by surprise; he would have deduced his probable fate using the above, very simple, line of reasoning. He would have accepted that probability, rearranged his priorities, and acted accordingly until his time ran out—or, more probably, figured out an equally simple and obvious-in-retrospect way to avoid his fate. If Charlie Gordon had really been ultrasmart, there would have been no story. ”
We know that Newton’s theory of gravity was hard to invent; it must not have been obvious, because nobody had solved it until Newton, and he was lauded as a hero for his great theory. And yet, it is so simple that we teach it to high school students, and some of them actually understand it. Newton’s equation is also a unique solution; the constant of proportionality is fixed by experiment, the m/r^2 term is fixed by the need to include Kepler’s laws (which were well known at the time), and extra terms are excluded, because F must vanish when M2 vanishes, or else you violate the laws of motion which Newton had just discovered.
“If only you had been around to solve the problem instead of Maxwell and Einstein, how much work could have been saved!”
Obvious != simple != easy to learn. You of all people should understand this. You seemed to understand it seven years ago, back during the days of your wild and reckless youth. To quote SitS:
“Let’s take a concrete example, the story Flowers for Algernon (later the movie Charly), by Daniel Keyes. (I’m afraid I’ll have to tell you how the story comes out, but it’s a Character story, not an Idea story, so that shouldn’t spoil it.) Flowers for Algernon is about a neurosurgical procedure for intelligence enhancement. This procedure was first tested on a mouse, Algernon, and later on a retarded human, Charlie Gordon. The enhanced Charlie has the standard science-fictional set of superhuman characteristics; he thinks fast, learns a lifetime of knowledge in a few weeks, and discusses arcane mathematics (not shown). Then the mouse, Algernon, gets sick and dies. Charlie analyzes the enhancement procedure (not shown) and concludes that the process is basically flawed. Later, Charlie dies.
That’s a science-fictional enhanced human. A real enhanced human would not have been taken by surprise. A real enhanced human would realize that any simple intelligence enhancement will be a net evolutionary disadvantage—if enhancing intelligence were a matter of a simple surgical procedure, it would have long ago occurred as a natural mutation. This goes double for a procedure that works on rats! (As far as I know, this never occurred to Keyes. I selected Flowers, out of all the famous stories of intelligence enhancement, because, for reasons of dramatic unity, this story shows what happens to be the correct outcome.)
Note that I didn’t dazzle you with an abstruse technobabble explanation for Charlie’s death; my explanation is two sentences long and can be understood by someone who isn’t an expert in the field. It’s the simplicity of smartness that’s so impossible to convey in fiction, and so shocking when we encounter it in person. All that science fiction can do to show intelligence is jargon and gadgetry. A truly ultrasmart Charlie Gordon wouldn’t have been taken by surprise; he would have deduced his probable fate using the above, very simple, line of reasoning. He would have accepted that probability, rearranged his priorities, and acted accordingly until his time ran out—or, more probably, figured out an equally simple and obvious-in-retrospect way to avoid his fate. If Charlie Gordon had really been ultrasmart, there would have been no story. ”
We know that Newton’s theory of gravity was hard to invent; it must not have been obvious, because nobody had solved it until Newton, and he was lauded as a hero for his great theory. And yet, it is so simple that we teach it to high school students, and some of them actually understand it. Newton’s equation is also a unique solution; the constant of proportionality is fixed by experiment, the m/r^2 term is fixed by the need to include Kepler’s laws (which were well known at the time), and extra terms are excluded, because F must vanish when M2 vanishes, or else you violate the laws of motion which Newton had just discovered.