I meant, ‘based on what you’ve said about Zvi’s model’ I.e. Nostalgebraist says zvi says Rt never goes below 1 - if you look at the plot he produced Rt is always above 1 given Zvi’s assumptions, which the London data falsified.
Rt can go below one in Zvi’s model. It just takes an even higher rate of new infections.
Here’s the same picture, with the horizontal axis extended so this is visible: https://64.media.tumblr.com/008005269202c21313ef5d5db6a8a4c6/83a097f275903c4c-81/s2048x3072/7b2e6e27f1fb7ad57ac0dcc6bd61fce77a18a2c1.png
Of course, in the real world, Rt dips below one all the time, as you can see in the colored points.
As a dramatic example, Zvi’s model is predicting the future forward from 12/23/20. But a mere week before that date, Rt was below one!
I meant, ‘based on what you’ve said about Zvi’s model’ I.e. Nostalgebraist says zvi says Rt never goes below 1 - if you look at the plot he produced Rt is always above 1 given Zvi’s assumptions, which the London data falsified.
Rt can go below one in Zvi’s model. It just takes an even higher rate of new infections.
Here’s the same picture, with the horizontal axis extended so this is visible: https://64.media.tumblr.com/008005269202c21313ef5d5db6a8a4c6/83a097f275903c4c-81/s2048x3072/7b2e6e27f1fb7ad57ac0dcc6bd61fce77a18a2c1.png
Of course, in the real world, Rt dips below one all the time, as you can see in the colored points.
As a dramatic example, Zvi’s model is predicting the future forward from 12/23/20. But a mere week before that date, Rt was below one!