I think the argument is that if the stakes are high enough people’s betting patterns create a zero expectation on the bit itself. This seems wrong on the face of it. It assumes that the bettors on the chess match are perfectly evaluating their skills at making perfect bets with expectation of zero, that there is no skill in determining the bet. Thus with an expectation of zero, the winner of the bet is determined by luck.
This becomes more absurd in the poker game. The difference in skill of betting for action is a large part of the game. Most poker books try to teach it. Most people can’t do it.
This is precisely my point and probably the basis for the judge’s rationale in the old case. The situation of those” most people” who cannot do it but still take parts in betting on poker is similar to those playing the roulete. if this accounts for a large percent of participants than it is justified to regard the activity as primarily—gambling (or game of luck)
I think there are additional ingredients that will push the situation towards a game of luck when the stakes are high.
I think I see… for positive-expectation games (e.g. scientific research) it is possible that the majority of people involved play with justified reason to believe they will make money/good/utility/whatever without implying that the minority without that justified reason to believe will lose tons of money. For zero or negative sum games this is not true. The majority of people cannot have justified reason to believe their individual game is positive expectation (it’s not justified ’cause information that the game is zero/negative sum, and information about how good at the game other people are, is widely available), and are therefore relying on “luck” to select them to win rather than others. Or if the majority know they will win, that implies the minority are losing a lot.
I couldn’t discern why the magnitude of the stakes matters at all. By the article’s reasoning, each player has some probability of winning ⇒ chess is a “game of luck”.
I think the argument is that if the stakes are high enough people’s betting patterns create a zero expectation on the bit itself. This seems wrong on the face of it. It assumes that the bettors on the chess match are perfectly evaluating their skills at making perfect bets with expectation of zero, that there is no skill in determining the bet. Thus with an expectation of zero, the winner of the bet is determined by luck.
This becomes more absurd in the poker game. The difference in skill of betting for action is a large part of the game. Most poker books try to teach it. Most people can’t do it.
“Most people can’t do it”
This is precisely my point and probably the basis for the judge’s rationale in the old case. The situation of those” most people” who cannot do it but still take parts in betting on poker is similar to those playing the roulete. if this accounts for a large percent of participants than it is justified to regard the activity as primarily—gambling (or game of luck) I think there are additional ingredients that will push the situation towards a game of luck when the stakes are high.
I think I see… for positive-expectation games (e.g. scientific research) it is possible that the majority of people involved play with justified reason to believe they will make money/good/utility/whatever without implying that the minority without that justified reason to believe will lose tons of money. For zero or negative sum games this is not true. The majority of people cannot have justified reason to believe their individual game is positive expectation (it’s not justified ’cause information that the game is zero/negative sum, and information about how good at the game other people are, is widely available), and are therefore relying on “luck” to select them to win rather than others. Or if the majority know they will win, that implies the minority are losing a lot.
I couldn’t discern why the magnitude of the stakes matters at all. By the article’s reasoning, each player has some probability of winning ⇒ chess is a “game of luck”.