The question is asking about a particular person: “I”. This reference is inherently understood from my perspective. “I” is the one most immediate to the subjective experience. It is not identified by any objective difference or underlying mechanics. “Who I am” is primitive. There is no way to formulate a probability for it being the Original or the Clone.
This paragraph. Here’s where you lost me.
What if the question was “what is the probability that am I the causal descendant of the Original, that in a world without the mad scientist I would still exist?” Is that different than “what is the probability that I am the Original?” If so, how? If not, what’s the difference?
The Orignal/Clone is referring to the two physical persons in the experiment. One is a physical copy that existed before, the other created by mad scientists during the experiment. You can change the Original to “the causal descendant of the Original, that in a world without the mad scientist I would still exist?”. But I don’t think that’s significant. Because the question does not depend on that.
To illustrate this we can change the experiment. Instead of a direct cloning process, now the mad scientist will split you through the middle into two halves: the left part (L), and the right (R). Then he will complete the two by cloning the missing half onto them. So we still end up with two indiscernible copies. L and R. Now after waking up the second day, you can ask yourself “what is the probability that I am L?”. It is still a self-locating probability. And I thought about using this example in the post since it is more symmetrical. I ended up against it because it seems too exotic.
I am convinced that you are confused but I have no idea how to figure out exactly what you’re confused about. My best guess is that you don’t agree that “a quantification of your uncertainty about propositions” is a good description of probabilities. Regardless, I think that e.g. Measure’s objection is better phrased than mine.
I don’t understand this argument.
This paragraph. Here’s where you lost me.
What if the question was “what is the probability that am I the causal descendant of the Original, that in a world without the mad scientist I would still exist?” Is that different than “what is the probability that I am the Original?” If so, how? If not, what’s the difference?
The Orignal/Clone is referring to the two physical persons in the experiment. One is a physical copy that existed before, the other created by mad scientists during the experiment. You can change the Original to “the causal descendant of the Original, that in a world without the mad scientist I would still exist?”. But I don’t think that’s significant. Because the question does not depend on that.
To illustrate this we can change the experiment. Instead of a direct cloning process, now the mad scientist will split you through the middle into two halves: the left part (L), and the right (R). Then he will complete the two by cloning the missing half onto them. So we still end up with two indiscernible copies. L and R. Now after waking up the second day, you can ask yourself “what is the probability that I am L?”. It is still a self-locating probability. And I thought about using this example in the post since it is more symmetrical. I ended up against it because it seems too exotic.
I am convinced that you are confused but I have no idea how to figure out exactly what you’re confused about. My best guess is that you don’t agree that “a quantification of your uncertainty about propositions” is a good description of probabilities. Regardless, I think that e.g. Measure’s objection is better phrased than mine.