“Brain emulation” implies high resolution. A large transformer trained on predicting the activation rates of, say, 100k cortical electrodes situated over the left temporal and frontal lobes might get you most of the way there.
Right now, a brain model AGI seems much harder than a language model AGI (which might turn out to be good enough via a miracle of being in the same goal attainment attractor as humans), and by definition an AGI of unspecified nature is at most as difficult as that. It might be possible to ask a stawberry aligned AGI to set up a brain model AGI, perhaps even for specific humans, and that seems like a more plausible plan to get there in time than developing it with human effort. (That’s a more abstract wish than disabling specific computing devices, likely harder to align.)
You would need a Godzilla to set that up before Mega-Godzilla shows up.
“Brain emulation” implies high resolution. A large transformer trained on predicting the activation rates of, say, 100k cortical electrodes situated over the left temporal and frontal lobes might get you most of the way there.
Right now, a brain model AGI seems much harder than a language model AGI (which might turn out to be good enough via a miracle of being in the same goal attainment attractor as humans), and by definition an AGI of unspecified nature is at most as difficult as that. It might be possible to ask a stawberry aligned AGI to set up a brain model AGI, perhaps even for specific humans, and that seems like a more plausible plan to get there in time than developing it with human effort. (That’s a more abstract wish than disabling specific computing devices, likely harder to align.)