Loved you essay, so interesting, exciting, fun & educative, thank you for it :)
Here is a few points I would like to make as they come “as is” in my limited brain:
1) I totally subscribe to it as well as to the many “longevicists” (or whatever it is called, is there a name for it?) before you like Aubrey about addressing human aging as a disease/condition/self-damage/… that has to be addressed directly. As would determined any simple “root cause analysis” why indeed not spending much more resources into directly addressing the root cause rather than all its individual numerous symptoms (i.e. all the diseases/damage which result from the aging process)?
2) The obvious dangers of experimenting with aging therapy could be solved using simulation, there is already some work on going trying to digitally simulate at molecular level some organs like liver, brain, etc… once we have a fully functioning human simulation at atom/molecular levels, it will be much safer to unleash/test any kind of aging therapy on it. But then some people will argue that if we have a working atom-by-atom biological simulation of the human body (including its brain) then we have reached the TS and we can simply accelerate that simulation as much as we can to make that human body and brain simulation work on solving its own aging process :) I love these conundrums about human body/brain simulations :)
3) This leads me to the 2 separate approaches of solving aging that have been mentioned here:
3a) Trying to solve aging using the technology we currently have.
3b) Just work on SI (Super intelligence) and wait until we have SI to then ask SI to solve human aging.
I would say wait not combining 3a) and 3b) together into
3c) Using “centaur intelligence” (as in Kasparov “centaur chess”) to try to solve human aging by using the combined force of human research and AI/AGI together to work on solving human aging as it would have the following benefits:
• Working efficiently & effectively on human aging right now.
• Applying AI/AGI to a hard problem like human aging would also likely lead to further advances in AI/AGI research.
(bullet point character shortcut tip: on Windows: [Alt]-[Numpad 7] for those who do not yet know!)
4) If we have SI and we ask it to solve human aging I guess one possible and quite rational answer that it would give is: “OMG the human body is so lame, why not digitalize/store/upload the human brain/mind/consciousness (and the old human body if you really feel like it) data in the cloud and then embody that brain/mind/consciousness into whatever much better body/bodies than a lame natural human body full of design flaws and limitations? And if you really want me to solve that lame natural human body aging, yes of course I can do that, here are 1000 different solutions from “least invasive/transformative” to “most invasive/transformative” to implement (...)” :)
5) Just one small detail I have spotted, at some point you mention than Covid-19 IFR is 2%, may I ask you where you get that number from? From what I’ve read through the pandemic this number started at around 1% (specially it is the IFR not the CFR) and has decreased ever since with probably an average of 0.5% through the pandemic so far. But if I am wrong please let me know where you got your 2% number from so you make me less wrong :)
Indeed—people are finally thinking “what if ageing has something to do with all the age-related disease?” This is great, so long as you remember that “ageing” is not just one single root cause of age-related disease; rather, it’s a multitude of self-inflicted injuries the body slowly accumulates, which combine to make us frail and disease-prone.
Simulations of that fidelity level would indeed be ridiculously powerful tools, but I don’t know how long it’ll take to reach that level. Also, with a true full-body molecular simulation you’d have the ethical problem that a simulation at that level of detail is for all intents and purposes a human being, and may no longer be ethical to experiment on. The strength of damage repair as a medicinal paradigm is that it exposes a whole host of targets that we can safely go after, confident that doing so will improve function without having a full understanding of how the body works. Often we try to treat disease by changing the way the body works (e.g. statins), but this is very hard to do without side-effects because of how complex and inter-connected the body’s systems are. But the things I call “damage” are age-related changes that are unambiguously bad for you and can in principle be reversed. Doing so might not cure all age-related diseases, but it should prevent them all, since by definition they tend not to occur in people who don’t have a lifetime of age-related changes.
People are absolutely applying the centaur-intelligence thing to ageing already (e.g. Gero, Altos, In Silico), indeed I think all current applications of AI are working in synergy with human intelligence, and I hope it stays that way for as long as possible. It’s good that we are indeed able to benefit from (what currently passes for) AI long before it reaches the level where we can just ask ChatGPT “how do I cure ageing” and it just tells us.
What matters here is what we want. For now, I quite enjoy being made out of meat, and I think most other people do too. Our desires are what they are, and they don’t require justifying, to AGI or to anyone else. Of course, such transformative alterations/extensions to our selves will no doubt be unlocked one day, and I could happily live in a world where people modify themselves in all sorts of different ways, one step at a time, on their own terms, as and when they feel like it.
It’s almost certainly me that’s wrong here—there have been lots of different IFRs quoted so I picked 2% as the highest I could remember hearing, just to be conservative. Lower IFR would strengthen the argument I was making there, and indeed the true number is almost certainly much lower due to e.g. asymptomatic infections.
Hi Phil,
Loved you essay, so interesting, exciting, fun & educative, thank you for it :)
Here is a few points I would like to make as they come “as is” in my limited brain:
1) I totally subscribe to it as well as to the many “longevicists” (or whatever it is called, is there a name for it?) before you like Aubrey about addressing human aging as a disease/condition/self-damage/… that has to be addressed directly. As would determined any simple “root cause analysis” why indeed not spending much more resources into directly addressing the root cause rather than all its individual numerous symptoms (i.e. all the diseases/damage which result from the aging process)?
2) The obvious dangers of experimenting with aging therapy could be solved using simulation, there is already some work on going trying to digitally simulate at molecular level some organs like liver, brain, etc… once we have a fully functioning human simulation at atom/molecular levels, it will be much safer to unleash/test any kind of aging therapy on it. But then some people will argue that if we have a working atom-by-atom biological simulation of the human body (including its brain) then we have reached the TS and we can simply accelerate that simulation as much as we can to make that human body and brain simulation work on solving its own aging process :) I love these conundrums about human body/brain simulations :)
3) This leads me to the 2 separate approaches of solving aging that have been mentioned here:
3a) Trying to solve aging using the technology we currently have.
3b) Just work on SI (Super intelligence) and wait until we have SI to then ask SI to solve human aging.
I would say wait not combining 3a) and 3b) together into
3c) Using “centaur intelligence” (as in Kasparov “centaur chess”) to try to solve human aging by using the combined force of human research and AI/AGI together to work on solving human aging as it would have the following benefits:
• Working efficiently & effectively on human aging right now.
• Applying AI/AGI to a hard problem like human aging would also likely lead to further advances in AI/AGI research.
(bullet point character shortcut tip: on Windows: [Alt]-[Numpad 7] for those who do not yet know!)
4) If we have SI and we ask it to solve human aging I guess one possible and quite rational answer that it would give is: “OMG the human body is so lame, why not digitalize/store/upload the human brain/mind/consciousness (and the old human body if you really feel like it) data in the cloud and then embody that brain/mind/consciousness into whatever much better body/bodies than a lame natural human body full of design flaws and limitations? And if you really want me to solve that lame natural human body aging, yes of course I can do that, here are 1000 different solutions from “least invasive/transformative” to “most invasive/transformative” to implement (...)” :)
5) Just one small detail I have spotted, at some point you mention than Covid-19 IFR is 2%, may I ask you where you get that number from? From what I’ve read through the pandemic this number started at around 1% (specially it is the IFR not the CFR) and has decreased ever since with probably an average of 0.5% through the pandemic so far. But if I am wrong please let me know where you got your 2% number from so you make me less wrong :)
Indeed—people are finally thinking “what if ageing has something to do with all the age-related disease?” This is great, so long as you remember that “ageing” is not just one single root cause of age-related disease; rather, it’s a multitude of self-inflicted injuries the body slowly accumulates, which combine to make us frail and disease-prone.
Simulations of that fidelity level would indeed be ridiculously powerful tools, but I don’t know how long it’ll take to reach that level. Also, with a true full-body molecular simulation you’d have the ethical problem that a simulation at that level of detail is for all intents and purposes a human being, and may no longer be ethical to experiment on. The strength of damage repair as a medicinal paradigm is that it exposes a whole host of targets that we can safely go after, confident that doing so will improve function without having a full understanding of how the body works. Often we try to treat disease by changing the way the body works (e.g. statins), but this is very hard to do without side-effects because of how complex and inter-connected the body’s systems are. But the things I call “damage” are age-related changes that are unambiguously bad for you and can in principle be reversed. Doing so might not cure all age-related diseases, but it should prevent them all, since by definition they tend not to occur in people who don’t have a lifetime of age-related changes.
People are absolutely applying the centaur-intelligence thing to ageing already (e.g. Gero, Altos, In Silico), indeed I think all current applications of AI are working in synergy with human intelligence, and I hope it stays that way for as long as possible. It’s good that we are indeed able to benefit from (what currently passes for) AI long before it reaches the level where we can just ask ChatGPT “how do I cure ageing” and it just tells us.
What matters here is what we want. For now, I quite enjoy being made out of meat, and I think most other people do too. Our desires are what they are, and they don’t require justifying, to AGI or to anyone else. Of course, such transformative alterations/extensions to our selves will no doubt be unlocked one day, and I could happily live in a world where people modify themselves in all sorts of different ways, one step at a time, on their own terms, as and when they feel like it.
It’s almost certainly me that’s wrong here—there have been lots of different IFRs quoted so I picked 2% as the highest I could remember hearing, just to be conservative. Lower IFR would strengthen the argument I was making there, and indeed the true number is almost certainly much lower due to e.g. asymptomatic infections.