I did a series of podcasts on COVID with Greg Cochran and Greg was right early on. Greg has said from the beginning that the risk of a harmful mutation is reasonably high because the virus is new meaning there are likely lots of potential beneficial mutations (from the virus’s viewpoint) that have not yet been found.
There was a huge number of cases before September around the world. Why didn’t we see the new more transmissive variants earlier? (One source could be cross-over from some animals, another is the rare cases of extremely long-lasting Covid infection. Curious if people are doing Bayesian calculations for this.)
It could be the time lag from when antibody-based plasma therapy (if that makes sense, I’m not even sure that’s how it works) started to be used somewhat widely, plus the time it takes for a new variant to spread enough to get noticed.
I did a series of podcasts on COVID with Greg Cochran and Greg was right early on. Greg has said from the beginning that the risk of a harmful mutation is reasonably high because the virus is new meaning there are likely lots of potential beneficial mutations (from the virus’s viewpoint) that have not yet been found.
https://soundcloud.com/user-519115521
There was a huge number of cases before September around the world. Why didn’t we see the new more transmissive variants earlier? (One source could be cross-over from some animals, another is the rare cases of extremely long-lasting Covid infection. Curious if people are doing Bayesian calculations for this.)
It could be the time lag from when antibody-based plasma therapy (if that makes sense, I’m not even sure that’s how it works) started to be used somewhat widely, plus the time it takes for a new variant to spread enough to get noticed.
Yes, the more people infected with the virus, and the longer the virus is in people the more time for a successful mutation to arise.