it’s the idea of seeing scientific measurements in those terms and seeing what it means for the interpretation of quantum mechanics.
My response is that Everett wasn’t trying to provide an Interpretation of Quantum Mechanics.
The Relative State Formulation of Quantum Mechanics isn’t an interpertation. It’s a formulation.
It’s an actual plan to build an actual mathematical model that does something no other mathematical model has ever done: model a measurement being made.
I think Everett’s thesis contains such a model, admittedly in a very simple boiled-down form. What more are you looking for?
I beg to differ. Everett’s thesis contains the requirements for such a model. Requirements that lend themselves to a software implementation.
I think we all understand the difference between software requirements, and actual software, right?
Everett wasn’t trying to provide an Interpretation of Quantum Mechanics
Neither did I claim that he was. (Though he does describe what he’s doing as offering a “metatheory for the standard theory”, and I don’t think it’s so very far from providing an interpretation.) I said he is interested in what the inclusion of observers in the system means for the interpretation of quantum mechanics, and I think he clearly is.
The Relative State Formulation of Quantum Mechanics isn’t an interpretation. It’s a formulation.
You can parrot Sean Carroll, sure, but I find his MWI advocacy unconvincing, let alone yours. At least he derives a thing or two in http://arxiv.org/abs/1405.7907 .
Well, it seems to me Everett laid down the requirements. Not the code. Here’s a project for the code.
No, it’s just some words. Again, consider taking a course or two.
You said:
My response is that Everett wasn’t trying to provide an Interpretation of Quantum Mechanics.
The Relative State Formulation of Quantum Mechanics isn’t an interpertation. It’s a formulation.
It’s an actual plan to build an actual mathematical model that does something no other mathematical model has ever done: model a measurement being made.
I beg to differ. Everett’s thesis contains the requirements for such a model. Requirements that lend themselves to a software implementation.
I think we all understand the difference between software requirements, and actual software, right?
Well, it seems to me Everett laid down the requirements. Not the code. Here’s a project for the code.
Neither did I claim that he was. (Though he does describe what he’s doing as offering a “metatheory for the standard theory”, and I don’t think it’s so very far from providing an interpretation.) I said he is interested in what the inclusion of observers in the system means for the interpretation of quantum mechanics, and I think he clearly is.
You can parrot Sean Carroll, sure, but I find his MWI advocacy unconvincing, let alone yours. At least he derives a thing or two in http://arxiv.org/abs/1405.7907 .
No, it’s just some words. Again, consider taking a course or two.
I am arguing against Many Worlds, if you can’t tell.
The fact that shminux had trouble telling that suggests that you aren’t doing a very good job explaining yourself.