It would be trivial for an SI to run a grainy simulation that was only computed out in greater detail when high-level variables of interest depended on it. Most sophisticated human simulations already try to work like this, e.g. particle filters for robotics or the Metropolis transport algorithm for ray-tracing works like this. No superintelligence would even be required, but in this case it is quite probable on priors as well, and if you were inside a superintelligent version you would never, ever notice the difference.
It’s clear that we’re not living in a set of physical laws designed for cheapest computation of intelligent beings, i.e., we are inside an apparent physics (real or simulated) that was chosen on other grounds than making intelligent beings cheap to simulate (if physics is real, then this follows immediately). But we could still, quite easily, be cheap simulations within a fixed choice of physics. E.g., the simulators grew up in a quantum relativistic universe, and now they’re much more cheaply simulating other beings within an apparently quantum relativistic universe, using sophisticated approximations that change the level of detail when high-level variables depend on it (so you see the right results in particle accelerators) and use cached statistical outcomes for proteins folding instead of recomputing the underlying quantum potential energy surface every time, or even for whole cells when the cells are mostly behaving as a statistical aggregate, etc. This isn’t a conspiracy theory, it’s a mildly-more-sophisticated version of what sophisticated simulation algorithms try to do right now—expend computational power where it’s most informative.
Unless P=NP, I don’t think it’s obvious that such a simulation could be built to be perfectly (to the limits of human science) indistinguishable from the original system being simulated. There are a lot of results which are easy to verify but arbitrarily hard to compute, and we encounter plenty of them in nature and physics. I suppose the simulators could be futzing with our brains to make us think we were verifying incorrect results, but now we’re alarmingly close to solipsism again.
I guess one way to to test this hypothesis would be to try to construct a system with easy-to-verify but arbitrarily-hard-to-compute behavior (“Project: Piss Off God”), and then scrupulously observe its behavior. Then we could keep making it more expensive until we got to a system that really shouldn’t be practically computable in our universe. If nothing interesting happens, then we have evidence that either we aren’t in a simulation, or P=NP.
I think it’s correct that this makes the simulation argument goes through, but I don’t believe the “trivial”. As far as I can see, you need the simulation code to literally keep track of will humans notice this—my intuition is that this would require AGI-grade code (without that I expect you would either have noticeable failures or you would have something that is so conservative about its decisions of what not to simulate that it will end up simulating the entire atmosphere on a quantum level because when and where hurricanes occur influences the variables it’s interested in), and I suppose you could call this squabbles over terminology but AGI-grade code is above my threshold for “trivial”.
[ETA: Sorry, you did say “for a superintelligence”—I guess I need to reverse my squabble over words.]
As far as I can see, you need the simulation code to literally keep track of will humans notice this
Not necessarily—when you build a particle accelerator you’re setting up lots of matter to depend on the exact details of small amounts of matter, which might be detectable on a much more automatic level. But in any case, most plausible simulators have AGI-grade code anyway.
Not necessarily—when you build a particle accelerator you’re setting up lots of matter to depend on the exact details of small amounts of matter, which might be detectable on a much more automatic level.
Ok; my point was that, due to butterfly effects, it seems likely that this is also true for the weather or some other natural process, but if there is a relatively simple way to calculate a well-calibrated probability distribution for whether any particular subatomic interaction will influence large amounts of matter, that should probably do the trick. (This works whether or not this distribution can actually detect the particular interactions that will influence the weather, as long as it can reliably detect the particle accelerator ones.)
But in any case, most plausible simulators have AGI-grade code anyway.
Fair enough, I think. Also I just noticed that you actually said “trivial for a SI”, which negates my terminological squabble—argh, sorry. … OK, comment retracted.
my point was that, due to butterfly effects, it seems likely that this is also true for the weather or some other natural process
Hm. True. I still feel like there ought to be some simple sense in which butterfly effects don’t render a well-calibrated statistical distribution for the weather poorly calibrated, or something along those lines—maybe, butterfly effects don’t correlate with utility in weather, or some other sense of low information value—but that does amp up the intelligence level required.
I later said “No SI required” so your retraction may be premature. :)
It would be trivial for an SI to run a grainy simulation that was only computed out in greater detail when high-level variables of interest depended on it. Most sophisticated human simulations already try to work like this, e.g. particle filters for robotics or the Metropolis transport algorithm for ray-tracing works like this. No superintelligence would even be required, but in this case it is quite probable on priors as well, and if you were inside a superintelligent version you would never, ever notice the difference.
It’s clear that we’re not living in a set of physical laws designed for cheapest computation of intelligent beings, i.e., we are inside an apparent physics (real or simulated) that was chosen on other grounds than making intelligent beings cheap to simulate (if physics is real, then this follows immediately). But we could still, quite easily, be cheap simulations within a fixed choice of physics. E.g., the simulators grew up in a quantum relativistic universe, and now they’re much more cheaply simulating other beings within an apparently quantum relativistic universe, using sophisticated approximations that change the level of detail when high-level variables depend on it (so you see the right results in particle accelerators) and use cached statistical outcomes for proteins folding instead of recomputing the underlying quantum potential energy surface every time, or even for whole cells when the cells are mostly behaving as a statistical aggregate, etc. This isn’t a conspiracy theory, it’s a mildly-more-sophisticated version of what sophisticated simulation algorithms try to do right now—expend computational power where it’s most informative.
Unless P=NP, I don’t think it’s obvious that such a simulation could be built to be perfectly (to the limits of human science) indistinguishable from the original system being simulated. There are a lot of results which are easy to verify but arbitrarily hard to compute, and we encounter plenty of them in nature and physics. I suppose the simulators could be futzing with our brains to make us think we were verifying incorrect results, but now we’re alarmingly close to solipsism again.
I guess one way to to test this hypothesis would be to try to construct a system with easy-to-verify but arbitrarily-hard-to-compute behavior (“Project: Piss Off God”), and then scrupulously observe its behavior. Then we could keep making it more expensive until we got to a system that really shouldn’t be practically computable in our universe. If nothing interesting happens, then we have evidence that either we aren’t in a simulation, or P=NP.
, or the simulating entity has mindbogglingly large amounts of computational power. But yes, it would rule out broad classes of simulating agents.
I think it’s correct that this makes the simulation argument goes through, but I don’t believe the “trivial”. As far as I can see, you need the simulation code to literally keep track of will humans notice this—my intuition is that this would require AGI-grade code (without that I expect you would either have noticeable failures or you would have something that is so conservative about its decisions of what not to simulate that it will end up simulating the entire atmosphere on a quantum level because when and where hurricanes occur influences the variables it’s interested in), and I suppose you could call this squabbles over terminology but AGI-grade code is above my threshold for “trivial”.
[ETA: Sorry, you did say “for a superintelligence”—I guess I need to reverse my squabble over words.]
Not necessarily—when you build a particle accelerator you’re setting up lots of matter to depend on the exact details of small amounts of matter, which might be detectable on a much more automatic level. But in any case, most plausible simulators have AGI-grade code anyway.
Ok; my point was that, due to butterfly effects, it seems likely that this is also true for the weather or some other natural process, but if there is a relatively simple way to calculate a well-calibrated probability distribution for whether any particular subatomic interaction will influence large amounts of matter, that should probably do the trick. (This works whether or not this distribution can actually detect the particular interactions that will influence the weather, as long as it can reliably detect the particle accelerator ones.)
Fair enough, I think. Also I just noticed that you actually said “trivial for a SI”, which negates my terminological squabble—argh, sorry. … OK, comment retracted.
Hm. True. I still feel like there ought to be some simple sense in which butterfly effects don’t render a well-calibrated statistical distribution for the weather poorly calibrated, or something along those lines—maybe, butterfly effects don’t correlate with utility in weather, or some other sense of low information value—but that does amp up the intelligence level required.
I later said “No SI required” so your retraction may be premature. :)
And it was so.