In the rocket industry, the ‘payload’ is the piece that reached orbit. That is how it is defined. You technically can occupy the entire upper portion of a Dragon spacecraft (the entire section above the second stage inside the fairing) with your mega-satellite. That entire satellite is ‘payload’ and the source of the ‘payload to LEO/geostationary orbit’ that gets quoted as the capability of the spacecraft.
You have to assume that “$10” figure is the lowest number possible, which means Musk is accounting for the entire payload.
That is a reasonable argument, but I think I’m still right: According to wikipedia, the starship’s payload to orbit capacity will be 100,000 kg, and the starship by itself, completely empty, weighs 120,000 kg. So it is impossible that the mass of the starship be included in the calculation of payload capacity, even though the starship does reach orbit.
So we can calculate the (optimistic) price per kg to orbit as follows: 100,000 kg per launch of Starship, cost per launch of Starship = cost of fuel + cost of vehicle + maintainance, I remember reading somewhere that the cost of fuel will be around $1M give or take a factor of 2, cost of vehicle is said by OP to be $5M, so basically $0 amortized over even just a few dozen launches… yeah it looks entirely plausible that it could be about $2M per 100,000 kg to orbit, which comes out to $20/kg. And if the price of fuel or maintainence drops it could go even lower.
EDIT: Now I see your calculation above. So fuel costs only $6.59 per kg of payload? That’s awesome! It’s actually less than $1M! So yeah, the $10/kg figure seems like a reasonable optimistic (i.e. in the long run, after all the kinks are worked out and economies of scale realized) estimate. I think we’ll hit it in 15 years, give or take 10.
The article I cited above suggests that Musk sees fuel costs as 900,000$/per lunch and total costs as 2,000,000$ per lunch which indicates $20/kg as payload costs.
I don’t think $10/kg will be achieved with starship but it might be with the next iteration that can afford to build even bigger rockets. Plans to produce the methan onsite with solar cells might also reduce propellent costs.
In the rocket industry, the ‘payload’ is the piece that reached orbit. That is how it is defined. You technically can occupy the entire upper portion of a Dragon spacecraft (the entire section above the second stage inside the fairing) with your mega-satellite. That entire satellite is ‘payload’ and the source of the ‘payload to LEO/geostationary orbit’ that gets quoted as the capability of the spacecraft.
You have to assume that “$10” figure is the lowest number possible, which means Musk is accounting for the entire payload.
That is a reasonable argument, but I think I’m still right: According to wikipedia, the starship’s payload to orbit capacity will be 100,000 kg, and the starship by itself, completely empty, weighs 120,000 kg. So it is impossible that the mass of the starship be included in the calculation of payload capacity, even though the starship does reach orbit.
So we can calculate the (optimistic) price per kg to orbit as follows: 100,000 kg per launch of Starship, cost per launch of Starship = cost of fuel + cost of vehicle + maintainance, I remember reading somewhere that the cost of fuel will be around $1M give or take a factor of 2, cost of vehicle is said by OP to be $5M, so basically $0 amortized over even just a few dozen launches… yeah it looks entirely plausible that it could be about $2M per 100,000 kg to orbit, which comes out to $20/kg. And if the price of fuel or maintainence drops it could go even lower.
EDIT: Now I see your calculation above. So fuel costs only $6.59 per kg of payload? That’s awesome! It’s actually less than $1M! So yeah, the $10/kg figure seems like a reasonable optimistic (i.e. in the long run, after all the kinks are worked out and economies of scale realized) estimate. I think we’ll hit it in 15 years, give or take 10.
The article I cited above suggests that Musk sees fuel costs as 900,000$/per lunch and total costs as 2,000,000$ per lunch which indicates $20/kg as payload costs.
I don’t think $10/kg will be achieved with starship but it might be with the next iteration that can afford to build even bigger rockets. Plans to produce the methan onsite with solar cells might also reduce propellent costs.