Furthermore, incorrect theories in S.I. can take very long time to rule out because it is very easy to set up—in very few bits—a long-running busy beaver that changes the output after many bits are outputted. For an S.I. driven agent, there’s various arbitrary doomsdays looming with probabilities greater than 1/1024 (extra length less than 10 bits).
Do you think a better agent should assign low probabilities to such arbitrary doomsdays in the first place? What would be a good general rule for that?
Having thought about it some more, I feel that a good induction method would start with p_doomsday(time) being a smooth function, and it would have to acquire great many bits of information-theoretic data before that function would grow very sharp and specific peaks.
Meanwhile, S.I. starts with an enormous set of weird preconceptions due to the use of some one dimensional Turing machine, and consequently produces really really bad priors. The badness of said priors is somewhat masked by very-easy-for-laymen-to-misinterpret optimality proofs.
I think that if you plot sane agent’s probability of doomsday by time, it won’t be some really weird shaped curve with incredibly sharp (Planck-time sharp) peaks at various points highly specific to the internal details of the agent. Really, it’s as if someone with a weird number-fear synasthesia looked at the list of years, since the alleged birth of Christ and picked the scariest numbers, then prophesied doomsday at those years. It is clearly completely insane.
Do you think a better agent should assign low probabilities to such arbitrary doomsdays in the first place? What would be a good general rule for that?
Having thought about it some more, I feel that a good induction method would start with p_doomsday(time) being a smooth function, and it would have to acquire great many bits of information-theoretic data before that function would grow very sharp and specific peaks.
Meanwhile, S.I. starts with an enormous set of weird preconceptions due to the use of some one dimensional Turing machine, and consequently produces really really bad priors. The badness of said priors is somewhat masked by very-easy-for-laymen-to-misinterpret optimality proofs.
I think that if you plot sane agent’s probability of doomsday by time, it won’t be some really weird shaped curve with incredibly sharp (Planck-time sharp) peaks at various points highly specific to the internal details of the agent. Really, it’s as if someone with a weird number-fear synasthesia looked at the list of years, since the alleged birth of Christ and picked the scariest numbers, then prophesied doomsday at those years. It is clearly completely insane.