I don’t think induction is of particular importance. We can’t function without assuming its validity. Thus, entertaining the idea that it is invalid is not constructive. I’d be very curious to see someone solve the problem of induction (which I briefly thought this was an attempt at), but it’s hardly an urgent matter.
Picking up on animals not evolving makes about as much sense as picking up on the fact that, if it weren’t for gravity, it would be tough to play badminton. This reinforces my suspicion that our concept of what we’re arguing about is so vastly different that a productive resolution is impossible.
I suppose the origin of this whole digression could be summarized by saying I thought the post was about (the problem of) induction, and was a useless point about a moderately interesting topic. Instead, it’s about (the practice of) induction, making it a decent but not terribly useful point about a rather uninteresting (or at least simple) topic. It is perhaps even less salient than the observation that, if we assume infinite sets of possibilities, then at some point Occam’s razor must work by sheer force of the nature of finite sum infinite sets having to have some arbitrary point after which they decrease.
It is perhaps even less salient than the observation that, if we assume infinite sets of possibilities, then at some point Occam’s razor must work by sheer force of the nature of finite sum infinite sets having to have some arbitrary point after which they decrease.
I don’t think induction is of particular importance. We can’t function without assuming its validity. Thus, entertaining the idea that it is invalid is not constructive. I’d be very curious to see someone solve the problem of induction (which I briefly thought this was an attempt at), but it’s hardly an urgent matter.
Picking up on animals not evolving makes about as much sense as picking up on the fact that, if it weren’t for gravity, it would be tough to play badminton. This reinforces my suspicion that our concept of what we’re arguing about is so vastly different that a productive resolution is impossible.
I suppose the origin of this whole digression could be summarized by saying I thought the post was about (the problem of) induction, and was a useless point about a moderately interesting topic. Instead, it’s about (the practice of) induction, making it a decent but not terribly useful point about a rather uninteresting (or at least simple) topic. It is perhaps even less salient than the observation that, if we assume infinite sets of possibilities, then at some point Occam’s razor must work by sheer force of the nature of finite sum infinite sets having to have some arbitrary point after which they decrease.
Ouch. Burn