Take an interval. Cut it into H pieces, where H is hyperfinite. This serves as the index set of a stochastic process, among many other uses. Imagine that for each of the H steps, you flip a coin to get −1 or +1. Then move an infinitesimal distance left or right based on the sign. This is Brownian motion. Each infinitesimal piece of the timeline is profitably thought of as a Planck time.
Discrete events, such as sudden hard shocks, can be modeled on this line. They are appreciable over an infinitesimal fraction of the line.
The hyperfinite timeline
Link post
Take an interval. Cut it into H pieces, where H is hyperfinite. This serves as the index set of a stochastic process, among many other uses. Imagine that for each of the H steps, you flip a coin to get −1 or +1. Then move an infinitesimal distance left or right based on the sign. This is Brownian motion. Each infinitesimal piece of the timeline is profitably thought of as a Planck time.
Discrete events, such as sudden hard shocks, can be modeled on this line. They are appreciable over an infinitesimal fraction of the line.