Follow-up: Trevor Bedford has also debunked the claim in this twitter thread, saying that by the time Wuhan had 100,000 infections there were 1000 severe cases and 300 deaths. For Ohio to be in that state now the disease would have had to be spreading there since about mid-December.
This ^...Another way to spot check the “100000 cases” estimate without knowing the Wuhan numbers is to consider that that would imply roughly 1e5 / (2^4) = 6250 cases 3 weeks ago (the typical delay between infection and death; assuming 6 day doubling time), which corresponds to 31-125 deaths by today for a case fatality rate in the interval of [0.005, 0.02]. That would be for Ohio alone. As of March 13, the US CDC is only reporting 36 deaths for the country as a whole (source; though reported as 47 deaths here) and Ohio is currently reporting 0 deaths (source). Not to say that this is a definitive argument against there being 100000 cases in Ohio, but it does suggest that this estimate wasn’t based on current understanding of the virus and its spread.
I hope that there is some actual epidemiology going on behind the scenes here that is being oversimplified for the press, but there’s nothing in the article to really indicate that the estimate has anything meaningful behind it...
I believe it’s obviously wrong and the stated methodology makes no sense. The fact that community transmission is occurring does not by any means mean that 1% of the population is affected. It’s possible there’s some other information that justifies this but I would be *extremely* surprised if it were actually the case that 100k people are infected in Ohio right now.
If this was the case it ought to be visible indirectly through its effect on Ohio’s healthcare system. I haven’t heard of such reports (and I do follow the situation fairly closely), but I haven’t looked for them either.
Adding to this—what impact would this have on Wei Dai’s estimates on mortality rates skyrocketing if health systems are overburdened? If significant portions of the population already have the illness, then would that imply a significantly lower mortality rate than expected? Or could this simply be a leading indicator that we are closer to the peak than we originally thought?
Ohio health official estimates 100,000 people in state have coronavirus:
https://thehill.com/policy/healthcare/487329-ohio-health-official-estimates-100000-people-in-state-have-coronavirus
This sounds crazy, but I don’t understand the methodology so I’m not sure… Do people think it’s plausible?
I can’t rule it out, but it doesn’t sound like this estimate was arrived at through sound practice.
Follow-up: Trevor Bedford has also debunked the claim in this twitter thread, saying that by the time Wuhan had 100,000 infections there were 1000 severe cases and 300 deaths. For Ohio to be in that state now the disease would have had to be spreading there since about mid-December.
This ^...Another way to spot check the “100000 cases” estimate without knowing the Wuhan numbers is to consider that that would imply roughly 1e5 / (2^4) = 6250 cases 3 weeks ago (the typical delay between infection and death; assuming 6 day doubling time), which corresponds to 31-125 deaths by today for a case fatality rate in the interval of [0.005, 0.02]. That would be for Ohio alone. As of March 13, the US CDC is only reporting 36 deaths for the country as a whole (source; though reported as 47 deaths here) and Ohio is currently reporting 0 deaths (source). Not to say that this is a definitive argument against there being 100000 cases in Ohio, but it does suggest that this estimate wasn’t based on current understanding of the virus and its spread.
Update: On March 13 Trevor Bedford also tweeted a rough estimate of 10K-40K cases nationally.
I hope that there is some actual epidemiology going on behind the scenes here that is being oversimplified for the press, but there’s nothing in the article to really indicate that the estimate has anything meaningful behind it...
I believe it’s obviously wrong and the stated methodology makes no sense. The fact that community transmission is occurring does not by any means mean that 1% of the population is affected. It’s possible there’s some other information that justifies this but I would be *extremely* surprised if it were actually the case that 100k people are infected in Ohio right now.
If this was the case it ought to be visible indirectly through its effect on Ohio’s healthcare system. I haven’t heard of such reports (and I do follow the situation fairly closely), but I haven’t looked for them either.
Adding to this—what impact would this have on Wei Dai’s estimates on mortality rates skyrocketing if health systems are overburdened? If significant portions of the population already have the illness, then would that imply a significantly lower mortality rate than expected? Or could this simply be a leading indicator that we are closer to the peak than we originally thought?