A powerful computer in a sealed box is about to be fired away from the Earth at the speed of light; it will never produce output and we’ll never see it again. From the point of view of perspective 1, the whole program is thus equivalent to a gigantic no-op. Nonetheless, I’d rather that the program running on it simulated conscious beings in Utopia than conscious beings in Hell. This I think forces me to perspective 2: that actually doing the calculations makes a moral difference.
EDIT: the “speed of light” thing was a mistake. Make that “close to the speed of light”.
I don’t think your thought experiment is logically consistent. You’re using a physical theory, namely special relativity, to discuss a case in which the theory explicitly refuses to say what happens, because it’s considered unphysical within that theory.
If the computer moves at exactly the speed of light, and assuming special relativity, the time in which the computer will reach a given step of its program becomes undefined, not “never.” In any physically possible case, in which the computer’s speed can be arbitrarily close to c, things develop completely normally in the computer’s own reference frame.
Moreover, if you observe the code of a program, it’s just a string of bits (assuming a binary computer). And a string of bits can be interpreted as implementing any arbitrary program, given an arbitrary choice of the interpreter. Therefore, until an actual interpretation happens, what makes your hypothetical “hell” and “Utopia” essentially different?
And a string of bits can be interpreted as implementing any arbitrary program, given an arbitrary choice of the interpreter.
You could discriminate between heaven and hell by considering the minimum length of an interpreting program. Such a program would have to produce output that would be directly comprehendible by us, and it would have to be written in a language that we wouldn’t regard as crazy.
In order to see heaven in hell, your interpreter probably has to contain hell.
Fair enough; that’s true when it comes to an arbitrary program. However, consider a program that contains both heaven and hell in different branches, and will take one of these different branches depending on the interpreter. Or, alternatively, consider a program simulating a “good” world that will, given some small tweak in the orignal interpreter, simulate a much worse world because some simple but essential thing will be off. Such thought experiments, as far as I see, override this objection.
In any physically possible case, in which the computer’s speed can be arbitrarily close to c, things develop completely normally in the computer’s own reference frame.
For the right right value of ‘arbitrary’ the computer never performs a single operation. The entire box is obliterated by collision with a stray electron before the processor can tick. The collision releases arbitrarily large amounts of energy and from there things just start getting messy.
In a thought experiment, you can assume anything, however unrealistic, as long as it’s logically consistent with the theory on which you’re basing it. Assuming away stray electrons is therefore OK in this particular thought experiment, since the assumption of a universe that would provide an endless completely obstacle-free path would still be consistent with special relativity. In fact, among the standard conventions for discussing thought experiments is not to bring up objections about such things, since it’s presumed that the author is intentionally assuming them away to make a more essential point about something else.
In contrast, introducing objects that move at exactly the speed c into a thought experiment based on special relativity results in a logical inconsistency. It’s the same mistake as if you assumed that Peano axioms hold and then started talking about a natural number such that zero is its successor. Since the very definition of such an object involves a logical contradiction, nothing useful can ever come out of such a discussion.
Could someone please explain why this was downvoted? (I don’t care about losing score, but I am concerned about the possibility that I wrote something stupid that I’m unaware of.)
Assuming away stray electrons is therefore OK in this particular thought experiment, since the assumption of a universe that would provide an endless completely obstacle-free path would still be consistent with special relativity.
Of course it is OK. But since it was unspecified it was a whole lot more interesting to imagine the effects of a cataclysmic collision with arbitrarily large energy. (Because any discussion of a question of consciousness that goes for more than 3 paragraphs before dissolving the question or finding an interesting tangent is at least two and a half paragraphs too long!)
Now I’m wondering whether such a collision would release enough light to obliterate Earth from an arbitrarily large (but within light cone) distance away. I’m thinking it would.
The speed of light qualification is interesting, because it may relate to the static aspect of the “conscious tape”. The computer is conscious in its reference frame; but since that clock is stopped, that consciousness will never begin.
As I observe to Vladimir_M, the “speed of light” thing was a mistake. I just wanted to make sure no-one ever observed any output from the computer under any circumstances.
No, I still think it’s interesting. Define time as a function of entropy (eg., “one second” means the time over which entropy increases by a constant amount). Time is stopped in the piece of paper’s reference frame, because the paper is static, and therefore has no entropy change, and therefore no passage of time.
A powerful computer in a sealed box is about to be fired away from the Earth at the speed of light; it will never produce output and we’ll never see it again. From the point of view of perspective 1, the whole program is thus equivalent to a gigantic no-op. Nonetheless, I’d rather that the program running on it simulated conscious beings in Utopia than conscious beings in Hell. This I think forces me to perspective 2: that actually doing the calculations makes a moral difference.
EDIT: the “speed of light” thing was a mistake. Make that “close to the speed of light”.
I don’t think your thought experiment is logically consistent. You’re using a physical theory, namely special relativity, to discuss a case in which the theory explicitly refuses to say what happens, because it’s considered unphysical within that theory.
If the computer moves at exactly the speed of light, and assuming special relativity, the time in which the computer will reach a given step of its program becomes undefined, not “never.” In any physically possible case, in which the computer’s speed can be arbitrarily close to c, things develop completely normally in the computer’s own reference frame.
Moreover, if you observe the code of a program, it’s just a string of bits (assuming a binary computer). And a string of bits can be interpreted as implementing any arbitrary program, given an arbitrary choice of the interpreter. Therefore, until an actual interpretation happens, what makes your hypothetical “hell” and “Utopia” essentially different?
The “speed of light” qualification was a mistake. I was just trying to get the computer out of our light cone somewhere we can never observe it.
You could discriminate between heaven and hell by considering the minimum length of an interpreting program. Such a program would have to produce output that would be directly comprehendible by us, and it would have to be written in a language that we wouldn’t regard as crazy.
In order to see heaven in hell, your interpreter probably has to contain hell.
Fair enough; that’s true when it comes to an arbitrary program. However, consider a program that contains both heaven and hell in different branches, and will take one of these different branches depending on the interpreter. Or, alternatively, consider a program simulating a “good” world that will, given some small tweak in the orignal interpreter, simulate a much worse world because some simple but essential thing will be off. Such thought experiments, as far as I see, override this objection.
For the right right value of ‘arbitrary’ the computer never performs a single operation. The entire box is obliterated by collision with a stray electron before the processor can tick. The collision releases arbitrarily large amounts of energy and from there things just start getting messy.
In a thought experiment, you can assume anything, however unrealistic, as long as it’s logically consistent with the theory on which you’re basing it. Assuming away stray electrons is therefore OK in this particular thought experiment, since the assumption of a universe that would provide an endless completely obstacle-free path would still be consistent with special relativity. In fact, among the standard conventions for discussing thought experiments is not to bring up objections about such things, since it’s presumed that the author is intentionally assuming them away to make a more essential point about something else.
In contrast, introducing objects that move at exactly the speed c into a thought experiment based on special relativity results in a logical inconsistency. It’s the same mistake as if you assumed that Peano axioms hold and then started talking about a natural number such that zero is its successor. Since the very definition of such an object involves a logical contradiction, nothing useful can ever come out of such a discussion.
Could someone please explain why this was downvoted? (I don’t care about losing score, but I am concerned about the possibility that I wrote something stupid that I’m unaware of.)
Of course it is OK. But since it was unspecified it was a whole lot more interesting to imagine the effects of a cataclysmic collision with arbitrarily large energy. (Because any discussion of a question of consciousness that goes for more than 3 paragraphs before dissolving the question or finding an interesting tangent is at least two and a half paragraphs too long!)
Now I’m wondering whether such a collision would release enough light to obliterate Earth from an arbitrarily large (but within light cone) distance away. I’m thinking it would.
The speed of light qualification is interesting, because it may relate to the static aspect of the “conscious tape”. The computer is conscious in its reference frame; but since that clock is stopped, that consciousness will never begin.
As I observe to Vladimir_M, the “speed of light” thing was a mistake. I just wanted to make sure no-one ever observed any output from the computer under any circumstances.
You could always just hide it in the forest near the oft-considered fallen tree.
No, I still think it’s interesting. Define time as a function of entropy (eg., “one second” means the time over which entropy increases by a constant amount). Time is stopped in the piece of paper’s reference frame, because the paper is static, and therefore has no entropy change, and therefore no passage of time.