My counterfactual attempts to get at the question “Holding ideas constant, how much would we need to increase compute until we’d have enough to build TAI/AGI/etc. in a few years?” This is (I think) what Ajeya is talking about with her timelines framework. Her median is +12 OOMs. I think +12 OOMs is much more than 50% likely to be enough; I think it’s more like 80% and that’s after having talked to a bunch of skeptics, attempted to account for unknown unknowns, etc. She mentioned to me that 80% seems plausible to her too but that she’s trying to adjust downwards to account for biases, unknown unknowns, etc.
Given that, am I right in thinking that your answer is really close to 90%, since failure-to-achieve-TAI/AGI/etc-due-to-being-unable-to-adapt-quickly-to-magically-increased-compute “shouldn’t count” for purposes of this thought experiment?
My counterfactual attempts to get at the question “Holding ideas constant, how much would we need to increase compute until we’d have enough to build TAI/AGI/etc. in a few years?” This is (I think) what Ajeya is talking about with her timelines framework. Her median is +12 OOMs. I think +12 OOMs is much more than 50% likely to be enough; I think it’s more like 80% and that’s after having talked to a bunch of skeptics, attempted to account for unknown unknowns, etc. She mentioned to me that 80% seems plausible to her too but that she’s trying to adjust downwards to account for biases, unknown unknowns, etc.
Given that, am I right in thinking that your answer is really close to 90%, since failure-to-achieve-TAI/AGI/etc-due-to-being-unable-to-adapt-quickly-to-magically-increased-compute “shouldn’t count” for purposes of this thought experiment?