I don’t agree with this presentation of what I’m saying.
I’m not terribly sure what SMTM means when they say “the increase in calorie intake is small”, but all possible interpretations of their claim seem wrong. For instance, one plausible interpretation in causal graph lingo is “if you applied the do operator on calorie intake and raised it by 20%, we would have seen an increase in body mass that’s significantly smaller than what we’ve actually seen”. I think this claim is wrong, basically for long-run energy balance reasons.
I’m not saying anything else about the structure of the causal graphs, which could be arbitrarily complicated and involve arbitrarily many nodes and dependencies. I’m just saying that if you apply the do operator on calorie intake and raise it by 20% then you’d get an increase in mean body mass that’s about as big as what we’ve seen.
Thanks for clarifying that I misrepresented your view. Based on your response here, you’re pointing out that there’s a strong correlation between increased caloric intake at the population level, and increased obesity. You are also saying that the explanations you’ve read from SMTM for why this correlation exists seem wrong, and also that they underestimate the magnitude or importance of the caloric intake.
WRT Eliezer’s arguments, you seem to be agreeing that there may be some underlying force(s) causing that increased caloric intake. However, you are very uncertain about which, if any, of the hypothesized forces(s) are the true causes of increased caloric intake.
Eliezer and others seem to be perhaps mistakenly interpreting you as denying the existence of, or “need for,” a deeper explanation for increased caloric intake and consequent weight gain. You are confused about why they are making this mistake.
I’m not sure who is “to blame” for the miscommunication but I suspect I simply was not clear enough in my top comment. Now it’s likely too late to clear up the issue for most readers as they won’t be following the developments in this thread.
I’m just saying that if you apply the do operator on calorie intake and raise it by 20% then you’d get an increase in mean body mass that’s about as big as what we’ve seen.
This is “assuming there’s no link “increased calorie intake → increased energy expenditure”″, right? I think one of the things Eliezer is saying is that there seems to have been such a link in the past and now there isn’t / it’s much weaker.
That’s not quite true—there is at least the naive link that a higher equilibrium body mass leads you to expend more energy in daily activities even if you exercise the same amount as before. In my very naive model I assume these are directly proportional, but Natalia cites some better research that does a log-linear regression of calorie expenditure on equilibrium (I think? I didn’t check this part) body mass which seems to be more accurate empirically.
I think it’s unclear whether we had the link you mention in the past, too. We definitely had a correlational link: people who did hard labor and ended up exercising a lot every day took in much more calories, as we would expect, and they were generally not obese. However, I think my argument would work just as well in the past if you just applied the do operator on calorie intake per day and looked at the causal impact on equilibrium body mass, as I don’t think there’s evidence that there’s a big downstream link from calorie intake per day to exercise.
I don’t agree with this presentation of what I’m saying.
I’m not terribly sure what SMTM means when they say “the increase in calorie intake is small”, but all possible interpretations of their claim seem wrong. For instance, one plausible interpretation in causal graph lingo is “if you applied the do operator on calorie intake and raised it by 20%, we would have seen an increase in body mass that’s significantly smaller than what we’ve actually seen”. I think this claim is wrong, basically for long-run energy balance reasons.
I’m not saying anything else about the structure of the causal graphs, which could be arbitrarily complicated and involve arbitrarily many nodes and dependencies. I’m just saying that if you apply the do operator on calorie intake and raise it by 20% then you’d get an increase in mean body mass that’s about as big as what we’ve seen.
Thanks for clarifying that I misrepresented your view. Based on your response here, you’re pointing out that there’s a strong correlation between increased caloric intake at the population level, and increased obesity. You are also saying that the explanations you’ve read from SMTM for why this correlation exists seem wrong, and also that they underestimate the magnitude or importance of the caloric intake.
WRT Eliezer’s arguments, you seem to be agreeing that there may be some underlying force(s) causing that increased caloric intake. However, you are very uncertain about which, if any, of the hypothesized forces(s) are the true causes of increased caloric intake.
Eliezer and others seem to be perhaps mistakenly interpreting you as denying the existence of, or “need for,” a deeper explanation for increased caloric intake and consequent weight gain. You are confused about why they are making this mistake.
Is that a more accurate account of your position?
Yes, this summary is accurate.
I’m not sure who is “to blame” for the miscommunication but I suspect I simply was not clear enough in my top comment. Now it’s likely too late to clear up the issue for most readers as they won’t be following the developments in this thread.
Feel free to adapt, or copy/paste, the summary into your parent comment if you like.
This is “assuming there’s no link “increased calorie intake → increased energy expenditure”″, right? I think one of the things Eliezer is saying is that there seems to have been such a link in the past and now there isn’t / it’s much weaker.
That’s not quite true—there is at least the naive link that a higher equilibrium body mass leads you to expend more energy in daily activities even if you exercise the same amount as before. In my very naive model I assume these are directly proportional, but Natalia cites some better research that does a log-linear regression of calorie expenditure on equilibrium (I think? I didn’t check this part) body mass which seems to be more accurate empirically.
I think it’s unclear whether we had the link you mention in the past, too. We definitely had a correlational link: people who did hard labor and ended up exercising a lot every day took in much more calories, as we would expect, and they were generally not obese. However, I think my argument would work just as well in the past if you just applied the do operator on calorie intake per day and looked at the causal impact on equilibrium body mass, as I don’t think there’s evidence that there’s a big downstream link from calorie intake per day to exercise.