My version of it (which may or may not be Paul’s version) predicts that in domains where people are putting in lots of effort to optimize a metric, that metric will grow relatively continuously. In other words, the more effort put in to optimize the metric, the more you can rely on straight lines for that metric staying straight (assuming that the trends in effort are also staying straight).
This is super helpful, thanks. Good explanation.
With this formulation of the “continuous view”, I can immediately think of places where I’d bet against it. The first which springs to mind is aging: I’d bet that we’ll see a discontinuous jump in achievable lifespan of mice. The gears here are nicely analogous to AGI too: I expect that there’s a “common core” (or shared cause) underlying all the major diseases of aging, and fixing that core issue will fix all of them at once, in much the same way that figuring out the “core” of intelligence will lead to a big discontinuous jump in AI capabilities. I can also point to current empirical evidence for the existence of a common core in aging, which might suggest analogous types of evidence to look at in the intelligence context.
Thinking about other analogous places… presumably we saw a discontinuous jump in flight range when Sputnik entered orbit. That one seems extremely closely analogous to AGI. There it’s less about the “common core” thing, and more about crossing some critical threshold. Nuclear weapons and superconductors both stand out a-priori as places where we’d expect a critical-threshold-related discontinuity, though I don’t think people were optimizing hard enough in superconductor-esque directions for the continuous view to make a strong prediction there (at least for the original discovery of superconductors).
I agree that when you know about a critical threshold, as with nukes or orbits, you can and should predict a discontinuity there. (Sufficient specific knowledge is always going to allow you to outperform a general heuristic.) I think that (a) such thresholds are rare in general and (b) in AI in particular there is no such threshold. (According to me (b) seems like the biggest difference between Eliezer and Paul.)
Some thoughts on aging:
It does in fact seem surprising, given the complexity of biology relative to physics, if there is a single core cause and core solution that leads to a discontinuity.
I would a priori guess that there won’t be a core solution. (A core cause seems more plausible, and I’ll roll with it for now.) Instead, we see a sequence of solutions that intervene on the core problem in different ways, each of which leads to some improvement on lifespan, and discovering these at different times leads to a smoother graph.
That being said, are people putting in a lot of effort into solving aging in mice? Everyone seems to constantly be saying that we’re putting in almost no effort whatsoever. If that’s true then a jumpy graph would be much less surprising.
As a more specific scenario, it seems possible that the graph of mouse lifespan over time looks basically flat, because we were making no progress due to putting in ~no effort. I could totally believe in this world that someone puts in some effort and we get a discontinuity, or even that the near-zero effort we’re putting in finds some intervention this year (but not in previous years) which then looks like a discontinuity.
If we had a good operationalization, and people are in fact putting in a lot of effort now, I could imagine putting my $100 to your $300 on this (not going beyond 1:3 odds simply because you know way more about aging than I do).
I’m not particularly enthusiastic about betting at 75%, that seems like it’s already in the right ballpark for where the probability should be. So I guess we’ve successfully Aumann agreed on that particular prediction.
presumably we saw a discontinuous jump in flight range when Sputnik entered orbit.
While I think orbit is the right sort of discontinuity for this, I think you need to specify ‘flight range’ in a way that clearly favors orbits for this to be correct, mostly because about a month before was the manhole cover launched/vaporized with a nuke.
[But in terms of something like “altitude achieved”, I think Sputnik is probably part of a continuous graph, and probably not the most extreme member of the graph?]
My understanding is that Sputnik was a big discontinuous jump in “distance which a payload (i.e. nuclear bomb) can be delivered” (or at least it was a conclusive proof-of-concept of a discontinuous jump in that metric). That metric was presumably under heavy optimization pressure at the time, and was the main reason for strategic interest in Sputnik, so it lines up very well with the preconditions for the continuous view.
So it looks like the R-7 (which launched Sputnik) was the first ICBM, and the range is way longer than the V-2s of ~15 years earlier, but I’m not easily finding a graph of range over those intervening years. (And the R-7 range is only about double the range of a WW2-era bomber, which further smooths the overall graph.)
[And, implicitly, the reason we care about ICBMs is because the US and the USSR were on different continents; if the distance between their major centers was comparable to England and France’s distance instead, then the same strategic considerations would have been hit much sooner.]
This is super helpful, thanks. Good explanation.
With this formulation of the “continuous view”, I can immediately think of places where I’d bet against it. The first which springs to mind is aging: I’d bet that we’ll see a discontinuous jump in achievable lifespan of mice. The gears here are nicely analogous to AGI too: I expect that there’s a “common core” (or shared cause) underlying all the major diseases of aging, and fixing that core issue will fix all of them at once, in much the same way that figuring out the “core” of intelligence will lead to a big discontinuous jump in AI capabilities. I can also point to current empirical evidence for the existence of a common core in aging, which might suggest analogous types of evidence to look at in the intelligence context.
Thinking about other analogous places… presumably we saw a discontinuous jump in flight range when Sputnik entered orbit. That one seems extremely closely analogous to AGI. There it’s less about the “common core” thing, and more about crossing some critical threshold. Nuclear weapons and superconductors both stand out a-priori as places where we’d expect a critical-threshold-related discontinuity, though I don’t think people were optimizing hard enough in superconductor-esque directions for the continuous view to make a strong prediction there (at least for the original discovery of superconductors).
I agree that when you know about a critical threshold, as with nukes or orbits, you can and should predict a discontinuity there. (Sufficient specific knowledge is always going to allow you to outperform a general heuristic.) I think that (a) such thresholds are rare in general and (b) in AI in particular there is no such threshold. (According to me (b) seems like the biggest difference between Eliezer and Paul.)
Some thoughts on aging:
It does in fact seem surprising, given the complexity of biology relative to physics, if there is a single core cause and core solution that leads to a discontinuity.
I would a priori guess that there won’t be a core solution. (A core cause seems more plausible, and I’ll roll with it for now.) Instead, we see a sequence of solutions that intervene on the core problem in different ways, each of which leads to some improvement on lifespan, and discovering these at different times leads to a smoother graph.
That being said, are people putting in a lot of effort into solving aging in mice? Everyone seems to constantly be saying that we’re putting in almost no effort whatsoever. If that’s true then a jumpy graph would be much less surprising.
As a more specific scenario, it seems possible that the graph of mouse lifespan over time looks basically flat, because we were making no progress due to putting in ~no effort. I could totally believe in this world that someone puts in some effort and we get a discontinuity, or even that the near-zero effort we’re putting in finds some intervention this year (but not in previous years) which then looks like a discontinuity.
If we had a good operationalization, and people are in fact putting in a lot of effort now, I could imagine putting my $100 to your $300 on this (not going beyond 1:3 odds simply because you know way more about aging than I do).
I’m not particularly enthusiastic about betting at 75%, that seems like it’s already in the right ballpark for where the probability should be. So I guess we’ve successfully Aumann agreed on that particular prediction.
While I think orbit is the right sort of discontinuity for this, I think you need to specify ‘flight range’ in a way that clearly favors orbits for this to be correct, mostly because about a month before was the manhole cover launched/vaporized with a nuke.
[But in terms of something like “altitude achieved”, I think Sputnik is probably part of a continuous graph, and probably not the most extreme member of the graph?]
My understanding is that Sputnik was a big discontinuous jump in “distance which a payload (i.e. nuclear bomb) can be delivered” (or at least it was a conclusive proof-of-concept of a discontinuous jump in that metric). That metric was presumably under heavy optimization pressure at the time, and was the main reason for strategic interest in Sputnik, so it lines up very well with the preconditions for the continuous view.
So it looks like the R-7 (which launched Sputnik) was the first ICBM, and the range is way longer than the V-2s of ~15 years earlier, but I’m not easily finding a graph of range over those intervening years. (And the R-7 range is only about double the range of a WW2-era bomber, which further smooths the overall graph.)
[And, implicitly, the reason we care about ICBMs is because the US and the USSR were on different continents; if the distance between their major centers was comparable to England and France’s distance instead, then the same strategic considerations would have been hit much sooner.]