presumably we saw a discontinuous jump in flight range when Sputnik entered orbit.
While I think orbit is the right sort of discontinuity for this, I think you need to specify ‘flight range’ in a way that clearly favors orbits for this to be correct, mostly because about a month before was the manhole cover launched/vaporized with a nuke.
[But in terms of something like “altitude achieved”, I think Sputnik is probably part of a continuous graph, and probably not the most extreme member of the graph?]
My understanding is that Sputnik was a big discontinuous jump in “distance which a payload (i.e. nuclear bomb) can be delivered” (or at least it was a conclusive proof-of-concept of a discontinuous jump in that metric). That metric was presumably under heavy optimization pressure at the time, and was the main reason for strategic interest in Sputnik, so it lines up very well with the preconditions for the continuous view.
So it looks like the R-7 (which launched Sputnik) was the first ICBM, and the range is way longer than the V-2s of ~15 years earlier, but I’m not easily finding a graph of range over those intervening years. (And the R-7 range is only about double the range of a WW2-era bomber, which further smooths the overall graph.)
[And, implicitly, the reason we care about ICBMs is because the US and the USSR were on different continents; if the distance between their major centers was comparable to England and France’s distance instead, then the same strategic considerations would have been hit much sooner.]
While I think orbit is the right sort of discontinuity for this, I think you need to specify ‘flight range’ in a way that clearly favors orbits for this to be correct, mostly because about a month before was the manhole cover launched/vaporized with a nuke.
[But in terms of something like “altitude achieved”, I think Sputnik is probably part of a continuous graph, and probably not the most extreme member of the graph?]
My understanding is that Sputnik was a big discontinuous jump in “distance which a payload (i.e. nuclear bomb) can be delivered” (or at least it was a conclusive proof-of-concept of a discontinuous jump in that metric). That metric was presumably under heavy optimization pressure at the time, and was the main reason for strategic interest in Sputnik, so it lines up very well with the preconditions for the continuous view.
So it looks like the R-7 (which launched Sputnik) was the first ICBM, and the range is way longer than the V-2s of ~15 years earlier, but I’m not easily finding a graph of range over those intervening years. (And the R-7 range is only about double the range of a WW2-era bomber, which further smooths the overall graph.)
[And, implicitly, the reason we care about ICBMs is because the US and the USSR were on different continents; if the distance between their major centers was comparable to England and France’s distance instead, then the same strategic considerations would have been hit much sooner.]