There is some preliminary evidence in favour of the view that transformers approximate a kind of Bayesian inference in-context (by which I mean something like, they look at in-context examples and process them to represent in their activations something like a Bayesian posterior for some “inner” model based on those examples as samples, and then predict using the predictive distribution for that Bayesian posterior). I’ll call the hypothesis that this is taking place “virtual Bayesianism”.
I’m not saying you should necessarily believe that, for current generation transformers. But fwiw I put some probability on it, and if I had to predict one significant capability advance in the next generation of LLMs it would be to predict that virtual Bayesianism becomes much stronger (in-context learning being a kind of primitive pre-cursor).
Re: the points in your strategic upshots. Given the above, the following question seems quite important to me: putting aside transformers or neural networks, and just working in some abstract context where we consider Bayesian inference on a data distribution that includes sequences of various lengths (i.e. the kinds of distribution that elicits in-context learning), is there a general principle of Bayesian statistics according to which general-purpose search algorithms tend to dominate the Bayesian posterior?
There is some preliminary evidence in favour of the view that transformers approximate a kind of Bayesian inference in-context (by which I mean something like, they look at in-context examples and process them to represent in their activations something like a Bayesian posterior for some “inner” model based on those examples as samples, and then predict using the predictive distribution for that Bayesian posterior). I’ll call the hypothesis that this is taking place “virtual Bayesianism”.
I’m not saying you should necessarily believe that, for current generation transformers. But fwiw I put some probability on it, and if I had to predict one significant capability advance in the next generation of LLMs it would be to predict that virtual Bayesianism becomes much stronger (in-context learning being a kind of primitive pre-cursor).
Re: the points in your strategic upshots. Given the above, the following question seems quite important to me: putting aside transformers or neural networks, and just working in some abstract context where we consider Bayesian inference on a data distribution that includes sequences of various lengths (i.e. the kinds of distribution that elicits in-context learning), is there a general principle of Bayesian statistics according to which general-purpose search algorithms tend to dominate the Bayesian posterior?