You still neglect the existence of insulating wraps for the hose which do improve efficiency, but are also not sold with the single-hose AC system, which lends evidence to my first point—companies are aware of small cost items that improve AC system efficiency, but do not include them with the AC by default, suggesting that there is an actual price point / consumer market / confounding issue at play that prevents them doing so
The full posts, quoted here for convenience
I think one reason that this error occurs is that there’s a mistaken assumption that the available literature captures all institutional knowledge on a topic, so if one simply spends enough time reading the literature, they’ll have all requisite knowledge needed for policy recommendations. I realize that this statement could apply equally to your own claims here, but in my experience I see it happen most often when someone reads a handful of the most recently released research papers and from just that small sample of work tries to draw conclusions applicable that are broadly applicable to the entire field.
Engineering claims are particularly suspect because institutional knowledge (often in the form of proprietary or confidential information held by companies and their employees) is where the difference between what is theoretically efficient and what is practically more efficient is found. It doesn’t even need to be protected information though—it can also just be that due to manufacturing reasons, or marketing reasons, or some type of incredibly aggravating constraint like “two hoses require a larger box and the larger box pushes you into a shipping size with much higher per-volume / mass costs so the overall cost of the product needs to be non-linearly higher than what you’d expect would be needed for a single hose unit, and that final per-unit cost is outside of what people would like to pay for an AC unit, unless you then also make drastic improvements to the motor efficiency, thermal efficiency, and reduce the sound level, at which point the price is now even higher than before, but you have more competitive reasons to justify it which will be accepted by a large enough % of the market to make up for the increased costs elsewhere, except the remaining % of the market can’t afford that higher per-unit cost at all, so we’re back to still making and selling a one-hose unit for them”.
Concrete example while we’re on the AC unit debate—there’s a very simple way to increase efficiency of portable AC units, and it’s to wrap the hot exhaust hose with insulating duct wrap so that less of the heat on that very hot hose radiates directly back into the room you’re trying to cool. Why do companies not sell their units with that wrap? Probably for one of any of the following reasons—A.) takes up a lot of space, B.) requires a time investment to apply to the unit which would dissuade buyers who think they can’t handle that complexity, C.) would cost more money to sell and no longer be profitable at the market’s price point, D.) has to be applied once the AC unit is in place, and generally is thick enough that the unit is no longer “portable” which during market testing was viewed as a negative by a large % of surveyed people, or E.) some other equally trivial sounding reason that nonetheless means it’s more cost effective for companies to NOT sell insulating duct wrap in the same box as the portable AC unit.
EDIT: I want to make a meta point here, which is that I have not personally worked on ACs, but I have built & shipped multiple products to consumers, and the type of stupid examples I gave in the first AC post are not just made-up for fun. Engineers argue extensively in meetings about “how can we make product A better”, and ideas get shot down for seemingly trivial reasons that basically come down to—yes, in a vacuum, that would be better, but unfortunately, there’s a ton of existing context like how large a truck is or what parts can actually be bought off the shelf that kneecap those ideas before they leave the design room. The engineers who designed the AC were not idiots, or morons, or clowns who don’t understand thermodynamic efficiency. Engineering is about working around limitations. Those limitations do not have to be rooted in physics; society or infrastructure or consumer behavior around critical price points can all be just as real in terms of what it is feasible for a company to create. Just look at how many startups fail and the founder claims in a postmortem, “Yeah, our tech was way better, but unfortunately people wouldn’t pay 10% more for it, even though it was AMAZING compared to our competitor. We just couldn’t get them to switch.”
EDIT 2: I’m pretty annoyed that you doubled-down on your conclusion even after admitting the actual efficiency difference was significantly less than expected, and then chose a different analysis to let you defend your original point anyway, so these edits might keep coming. Regarding market pressures, two-hose AC units do exist. Companies do sell them, and if consumers want to buy a two-hose AC unit, they can do so. But the presence of both one-hose AC units and two-hose AC units in the market tells us it is not winner-take-all and there is consumer behavior, e.g. around price or complexity, that prevents two-hose units from acquiring literally all market share. So until that changes, it will always be more rational for companies to sell one-hose AC units in addition to their two-hose AC unit, because otherwise they’d be leaving money on the floor by only servicing part of the consumer market. (EDIT 5: see also this post, which was itself a reply to AllAmericanBreakfast’s reply on this thread here)
EDIT 3: Let’s look at your math. Outdoor temp is 85-88 F, let’s just take the average and call it 86.5 F. That’s pretty hot. I’d definitely be uncomfortable in that scenario. How cold did the AC cool the rooms? You say on low fan it was 20.6 F degrees with one hose, 22.7 F with two hoses, and then on high fan, 18.3 F with one hose, and 22.2 F with two hoses. The control was 13.1 F. Looking at the control, that gives a room temperature of ~73.4 F. That is uncomfortably hot in my opinion. I keep my room temperature around 68-70 F ish. The internet tells me that this is within the window of a “comfortable room temperature” defined as 67-75 F[1], so I’m just a normal human, I guess. How well did the ACs accomplish that? With one hose, you got it down to ~66 F, and with two hoses, you had it down to about ~64 F. That is pretty cold in my mind—I would not set my AC that low if it actually reached that temperature. What does this mean? The one hose unit literally did the job it was designed to do. With an incredibly hot outside temperature, that resulted in an uncomfortable indoor “control” temperature, the one-hose AC was able to lower the temperature to a comfortable, ideal range, and then go below that, showing it even has margin left over. But now you’re saying that they should make the thing more expensive and optimize it for even greater efficiency because … why!? It works!
EDIT 4: I will die on this hill. This is the problem with how the rationalist community approaches the concept of what it means to “make a rational decision” perfectly demonstrated in a single debate. You do not make a “rational decision” in the real world by reasoning in a vacuum. That is how you arrive at a hypothetically good action, but it is not necessarily feasible or possible to perform, so you always need to check your analysis by looking at real world constraints and then pick the action that is 1.) actually possible in the real world, and 2.) still has the highest expected value. Failing to do that is not more clever or more rational, it is just a bad, broken model for how an ideal, optimal agent would behave. An optimal agent doesn’t ignore their surroundings—they play to them, exploit them, use them.
… companies are aware of small cost items that improve AC system efficiency, but do not include them with the AC by default, suggesting that there is an actual price point / consumer market / confounding issue at play that prevents them doing so
Or it suggests that consumers would mostly not notice the difference in a way which meaningfully increased sales, just like I claim happens with the single-hose vs two-hose issue. For instance, I believe an insulating wrap would not change the SEER rating (because IIRC the rating measurements don’t involve the hose), so consumers would not be able to recognize the impact on performance that way. That would explain why companies don’t include them, despite the apparent low cost.
(Also in the case of hose insulation I think the effect size is much smaller than 1 vs 2 hose, so that impacts the cost-benefit too.)
“Yeah, our tech was way better, but unfortunately people wouldn’t pay 10% more for it, even though it was AMAZING compared to our competitor. We just couldn’t get them to switch.”
This is also the sort of thing which I expect usually happens because the tech is way better in ways which aren’t obvious, or whose value isn’t obvious, to the person who makes the decision about whether to purchase.
Details like “it would bump the box up to another category” can’t matter that much, because in the worst case you could just ship it separately and we already know that costs at most $20 because we can in fact get an AC hose on Amazon for $20.
And sure, I wouldn’t be surprised if I were missing some key detail that made it $40 rather than $20 (maybe connectors?), but this just isn’t plausibly going to be big enough to offset the huge effect size of a second hose.
So until that changes, it will always be more rational for companies to sell one-hose AC units in addition to their two-hose AC unit, because otherwise they’d be leaving money on the floor by only servicing part of the consumer market.
What exactly do you think you’re objecting to here? I never said companies were failing to pursue profits. The point was to explain why the companies’ profit-maximizing strategy is to sell a product which could cheaply be improved. The lack of ideal reasoning is in the consumers, not the companies.
In general, you seem to have largely lost track of what the posts are actually saying.
This experiment, for me, actually provides evidence for the way visibility to the consumer drives engineering decisions but in the opposite manner of how I think you intended it to.
It was obvious to you (visible to the consumer), prior to the experiment, that the two-hose model was superior to the one-hose model. Even after running a controlled experiment that demonstrated that both A/Cs were able to cool your apartment to a comfortable temperature, you described the one-hose model as “very shitty,” showing that even this experiment was not powerful enough to convince you that both models would suit your needs just fine. Because it’s so obvious to you that two-hose A/Cs are superior to one-hose A/Cs, you’ll probably unnecessarily overpay for the two-hose model the next time you need an A/C.
Overall, we have another datapoint of a consumer projected to make a suboptimal purchasing decision, based on an inaccurate view of his own needs and the capabilities of the options on the market. This is exactly what you were worried about before you began the experiment, and so in this sense, the overall evidence provided by this scenario supports your conclusion about “form over substance” even more perhaps than it would have if the one-hose unit hadn’t cooled your apartment effectively.
At the heart of many such complex A/C purchasing decisions, the market is recognizing a simple truth: customers are split on whether they want a cheaper one-hose or a more expensive two-hose unit. The market therefore supplies both. People who buy a model that breaks too quickly or doesn’t cool effectively either return or replace their model with a different one, and move on to more important issues. This is a system that gets almost everybody what they need at a reasonable cost, without anybody having to think too hard about it.
That said, there are all kinds of other issues with the market that parallel the Potemkin Village and Godzilla metaphores that we’re trying to articulate when we try to find metaphores for AI risk in the human world. Climate change and war are two obvious examples. We ge the illusion of free choice and private property, but actually pump out all kinds of pollution that harms other people without their consent. We see big powerful states putting disfavored minority groups in concentration camps, with zero effective resistance. Even if we don’t worry about AGI, a garden variety that helps misaligned human agents do misaligned things better can help polluters profit from pollution and oppressors oppress more effectively. That harm can compound through the whole progression of AI to AGI.
Maybe the right move is to convince people that “alignment” is a broader issue than just AI, but that AI alignment is a key part of it. Government alignment, economic alignment, cultural alignment: these are framings that could be powerful, and more resonant and familiar, and be good ways to explain the issue and garner support. I wonder what would happen if we expanded on them?
We can even consider the proposed plan (add a 2nd hose and increase the price by $20) in the context of an actual company.
The proposed plan does not actually redesign the AC unit around the fact that we now have 2 hoses. It is “just” adding an additional hose.
Let’s assume that the distribution of AC unit cooling effectively looks something like this graphic that I made in 3 seconds.
In this image, we are choosing to assume that yes, in fact, 2-hose units are more efficient on average than a 1-hose unit. We are also recognizing that perhaps there is some overlap. Perhaps there are especially bad 2-hose units, and especially good 1-hose units.
Based on all of the evidence, I’m going to say that the average 1-hose unit does represent the minimum efficiency needed for cooling in an average consumer’s use-case—i.e. it is sufficient for their needs.
When I consider what would make a 2-hose unit good or bad, I suspect it has a lot to do with how much of the design is built around the fact that there are 2-hoses.
In your proposal, we simply add a 2nd hose to a unit that was otherwise designed functionally as a 1-hose unit. Let’s consider where that might be plotted on this graph.
I’m going to claim based on vague engineering intuition / judgment / experience that it goes right here.
If I am right about where this proposal falls against the competition, then here’s what we’ve done:
This is not a 1-hose unit any more. Despite it being more efficient than the average 1-hose units, and only slightly more expensive, consumers looking at 1-hose units (because they are concerned about cost) will not see this model. The argument that it is “only $20 more expensive” is irrelevant. Their search results are filtered, they read online that they wanted a one-hose unit, this product has been removed from their consideration.
This is a bad 2-hose unit. It is at the bottom of the efficiency scale, because other 2-hose units were actually designed to take full advantage of the 2-hoses. They will beat you on efficiency, even if they cost more. Wirecutter will list this in the “also ran” when discussing 2-hose units, “So and so sells a 2-hose model, but it was barely more efficient than a 1-hose, we cannot recommend it”.
A consumer looking at 2-hose units is already selecting for efficiency over cost, so they will not buy the “just add another hose” 2-hose unit, since it is on the wrong end of the 2-hose distribution.
You will acquire a reputation as the company that sells “cheap” products—your unit is cheaper than other 2-hose units, but isn’t better because it wasn’t designed as a 2-hose unit, and it was torn apart by reviewers.
Fixing this inefficiency requires actually designing around 2-hoses, which likely results in something like this
“Minimum viable”, in the context of a “minimum viable product” or MVP, is a term in engineering that represents the minimal thing that a consumer will pay to acquire. This is a product that can actually be sold. It’s not the literal worst in its category, and it has a clear supremacy over cheaper categories. This is also called table stakes. Reviewers will consider it fairly, consumers will not rage review it, etc.
However, it’s probably also a lot more expensive than the hypothetical “only $20 more” that has been repeatedly stated.
Even in the scenario where a reviewer does consider the “just add another hose” model when viewing one-hose units, we’ve already established that the one-hose unit is cheaper (by $20! if it’s a $200 unit, that’s 10%), and that the average 1-hose unit is sufficient for some average use-case. Therefore the rational consumer choice is to buy the cheaper one-hose anyway, because it’s irrational to pay more for efficiency that isn’t needed![1][2]
The exception here is some hypothetical consumer who knows, for a fact, that their unique situation requires a two-hose unit, e.g. they tried a one-hose unit already and it was insufficient.
There’s also an argument here that a rational option is to buy a 1-hose unit, and then if you need slightly more efficiency, just buy & wrap the 1-hose with insulation, as described here. This allows the consumer to purchase at the lower price point and then add efficiency if needed for the cost of the insulation. It’s unclear to me that the “just add another hose” AC would still perform better than an insulated 1-hose.
As a concrete example of rational one-hosing, here in the Netherlands it rarely gets hot enough that ACs are necessary, but when it does a bunch of elderly people die of heat stroke. Thus, ACs are expected to run only several days per year (so efficiency concerns are negligible), but having one can save your life.
I checked the biggest Dutch-only consumer-facing online retailer for various goods (bol.com). Unfortunately I looked before making a prediction for how many one-hose vs two-hose models they sell, but even conditional on me choosing to make a point of this, it still seems like it could be useful for readers to make a prediction at this point. Out of 694 models of air conditioner labeled as either one-hose or two-hose,
3
are two-hose.
This seems like strong evidence that the market successfully adapts to actual consumer needs where air conditioner hose count is concerned.
I must admit I was surprised by the statistics here. It is true if you only use the air conditioner few days a year, the energy efficiency is not important. However, the cooling capacity is important. I think many people are using efficiency to mean cooling capacity above. Anyway, let’s say the incremental cost of going from one hose to two hoses is $30. From working on Department of Energy energy efficiency rules, typically the marginal markup of an efficient product is less than the markup on the product overall (meaning that the incremental cost of just adding a hose is less than the $20 of buying it separately). It is true that with a smaller area for the air to come into the device with a hose, the velocity has to be higher, so the fan blades need to be made bigger (it typically is one motor powering two different fan blades on two sides, at least for window units). But then you could save money on the housing because the port is smaller. The incremental cost of motors is low. Then if the air conditioner cost $200 to start with, that would be 15% incremental cost. Then let’s say the cooling capacity increased by 25% (I would say it actually does matter that a T-shirt was used, which would allow room area and instead of just outdoor air, so it probably would be higher than this). What this means is that the two hose actually has greater cooling capacity per dollar, so you should choose a small two hose even if you don’t care about energy use at all. Strictly this is only true with no economies of scale, which is not a great assumption. But I think overall it will hold. Another case this would break down is if a person were plugging and unplugging many times, but I don’t think that’s the typical person. So I suspect what is going on is that people don’t realize that the cooling capacity of the one hose is actually reduced more than the cost, so they should just be getting a smaller capacity two hose unit (at lower initial cost and energy cost).
There is a broader question here of whether there should be energy efficiency regulations. If people were perfectly rational and had perfect information, we would not need them. But not only are the incremental costs of energy efficiency regulations found to be economically beneficial by the US Department of Energy (basically a good return on investment), but a retrospective study found that the actual incremental cost of meeting the efficiency regulations was about an order of magnitude lower than predicted by the Department of Energy! So I think there’s a very strong case for energy efficiency regulations.
For that one week of the year its very hot then any kind of air conditioner at all, even one with awful cooling power, is probably enough. If you can get a two-hose unit where the machinery is half the size of the 1-hose, and is proportionally cheaper then you should. But its worth remembering that the consumers know they are buying a piece of cheap junk: they intend to have it fan away at them for a week while they complain about how it never used to get this hot. Three years later there will be another heat wave, and (if they are anything like me) they will not be sure if they still have the air con they bought last time in their attic, or if they lost it in the house move. Or maybe it broke? So their is a very real chance that it is never being used again from 10 days after purchase: and the buyer knows that.
It was obvious to you (visible to the consumer), prior to the experiment, that the two-hose model was superior to the one-hose model. Even after running a controlled experiment that demonstrated that both A/Cs were able to cool his apartment to a comfortable temperature, you described the one-hose model as “very shitty,” showing that even this experiment was not powerful enough to convince you that both models would suit your needs just fine. Because it’s so obvious to you that two-hose A/Cs are superior to one-hose A/Cs, you’ll probably unnecessarily overpay for the two-hose model the next time you need an A/C.
Obviously I disagree, but I’d still say that’s a pretty fair interpretation.
I just want to say that I found this comment personally helpful.
This is the problem with how the rationalist community approaches the concept of what it means to “make a rational decision” perfectly demonstrated in a single debate. You do not make a “rational decision” in the real world by reasoning in a vacuum.
Something about this seems on point to me. Rationalists, in general, are much more likely to be mathematicians, than (for instance) mechanical engineers. It does seem right to me that when I look around, I see people drawn to abstract analyses, very plausibly at the expense of neglecting contextualized details that are crucial for making good calls. This seems like it could very well be a bias of my culture.
For instance, it’s fun and popular to talk about civilizational inadequacy, or how the world is mad. I think that is pointing at something true and important, but I wonder how much of that is basically overlooking the fact that it is hard to do things in the real world with a bunch of different stakeholders and a confusing mistakes.
In a lot of cases, civilizational inadequacy can be the result of engineers (broadly construed) who understand that “the perfect is the enemy of the good”, pushing projects through to completion anyway. The outcome is sometimes so muddled to be worse than having done nothing, but also, shipping things under constraints, even though they could be much better on some axes is how civilization runs.
Anyway, this makes me think that I should attempt to do more engineering projects, or otherwise find ways to operate in domains where the goal is to get “good enough”, within a bunch of not-always crisply-defined constraints.
I’ll edit the range, and note that “uncomfortably hot” is my opinion. Rest of my analysis / rant still applies. In fact, in your case, you don’t need need the AC unit at all, since you’d be fine with the control temperature.
I take fault with your primary conclusion, for the same reasons I gave in the first thread:
You claim how little adding a 2nd hose would impact the system, without analyzing the actual constraints that apply to engineers building a product that must be shipped & distributed
You still neglect the existence of insulating wraps for the hose which do improve efficiency, but are also not sold with the single-hose AC system, which lends evidence to my first point—companies are aware of small cost items that improve AC system efficiency, but do not include them with the AC by default, suggesting that there is an actual price point / consumer market / confounding issue at play that prevents them doing so
The full posts, quoted here for convenience
EDIT: I want to make a meta point here, which is that I have not personally worked on ACs, but I have built & shipped multiple products to consumers, and the type of stupid examples I gave in the first AC post are not just made-up for fun. Engineers argue extensively in meetings about “how can we make product A better”, and ideas get shot down for seemingly trivial reasons that basically come down to—yes, in a vacuum, that would be better, but unfortunately, there’s a ton of existing context like how large a truck is or what parts can actually be bought off the shelf that kneecap those ideas before they leave the design room. The engineers who designed the AC were not idiots, or morons, or clowns who don’t understand thermodynamic efficiency. Engineering is about working around limitations. Those limitations do not have to be rooted in physics; society or infrastructure or consumer behavior around critical price points can all be just as real in terms of what it is feasible for a company to create. Just look at how many startups fail and the founder claims in a postmortem, “Yeah, our tech was way better, but unfortunately people wouldn’t pay 10% more for it, even though it was AMAZING compared to our competitor. We just couldn’t get them to switch.”
EDIT 2: I’m pretty annoyed that you doubled-down on your conclusion even after admitting the actual efficiency difference was significantly less than expected, and then chose a different analysis to let you defend your original point anyway, so these edits might keep coming. Regarding market pressures, two-hose AC units do exist. Companies do sell them, and if consumers want to buy a two-hose AC unit, they can do so. But the presence of both one-hose AC units and two-hose AC units in the market tells us it is not winner-take-all and there is consumer behavior, e.g. around price or complexity, that prevents two-hose units from acquiring literally all market share. So until that changes, it will always be more rational for companies to sell one-hose AC units in addition to their two-hose AC unit, because otherwise they’d be leaving money on the floor by only servicing part of the consumer market. (EDIT 5: see also this post, which was itself a reply to AllAmericanBreakfast’s reply on this thread here)
EDIT 3: Let’s look at your math. Outdoor temp is 85-88 F, let’s just take the average and call it 86.5 F. That’s pretty hot. I’d definitely be uncomfortable in that scenario. How cold did the AC cool the rooms? You say on low fan it was 20.6 F degrees with one hose, 22.7 F with two hoses, and then on high fan, 18.3 F with one hose, and 22.2 F with two hoses. The control was 13.1 F. Looking at the control, that gives a room temperature of ~73.4 F. That is uncomfortably hot in my opinion. I keep my room temperature around 68-70 F ish. The internet tells me that this is within the window of a “comfortable room temperature” defined as 67-75 F[1], so I’m just a normal human, I guess. How well did the ACs accomplish that? With one hose, you got it down to ~66 F, and with two hoses, you had it down to about ~64 F. That is pretty cold in my mind—I would not set my AC that low if it actually reached that temperature. What does this mean? The one hose unit literally did the job it was designed to do. With an incredibly hot outside temperature, that resulted in an uncomfortable indoor “control” temperature, the one-hose AC was able to lower the temperature to a comfortable, ideal range, and then go below that, showing it even has margin left over. But now you’re saying that they should make the thing more expensive and optimize it for even greater efficiency because … why!? It works!
EDIT 4: I will die on this hill. This is the problem with how the rationalist community approaches the concept of what it means to “make a rational decision” perfectly demonstrated in a single debate. You do not make a “rational decision” in the real world by reasoning in a vacuum. That is how you arrive at a hypothetically good action, but it is not necessarily feasible or possible to perform, so you always need to check your analysis by looking at real world constraints and then pick the action that is 1.) actually possible in the real world, and 2.) still has the highest expected value. Failing to do that is not more clever or more rational, it is just a bad, broken model for how an ideal, optimal agent would behave. An optimal agent doesn’t ignore their surroundings—they play to them, exploit them, use them.
I averaged the following lower / upper temperatures.
Wikipedia: 64-75
www.cielowigle.com: 68-72
www.vivint.com: 68-76
www.provicincialheating.ca: 68-76
Or it suggests that consumers would mostly not notice the difference in a way which meaningfully increased sales, just like I claim happens with the single-hose vs two-hose issue. For instance, I believe an insulating wrap would not change the SEER rating (because IIRC the rating measurements don’t involve the hose), so consumers would not be able to recognize the impact on performance that way. That would explain why companies don’t include them, despite the apparent low cost.
(Also in the case of hose insulation I think the effect size is much smaller than 1 vs 2 hose, so that impacts the cost-benefit too.)
This is also the sort of thing which I expect usually happens because the tech is way better in ways which aren’t obvious, or whose value isn’t obvious, to the person who makes the decision about whether to purchase.
Details like “it would bump the box up to another category” can’t matter that much, because in the worst case you could just ship it separately and we already know that costs at most $20 because we can in fact get an AC hose on Amazon for $20.
And sure, I wouldn’t be surprised if I were missing some key detail that made it $40 rather than $20 (maybe connectors?), but this just isn’t plausibly going to be big enough to offset the huge effect size of a second hose.
What exactly do you think you’re objecting to here? I never said companies were failing to pursue profits. The point was to explain why the companies’ profit-maximizing strategy is to sell a product which could cheaply be improved. The lack of ideal reasoning is in the consumers, not the companies.
In general, you seem to have largely lost track of what the posts are actually saying.
This experiment, for me, actually provides evidence for the way visibility to the consumer drives engineering decisions but in the opposite manner of how I think you intended it to.
It was obvious to you (visible to the consumer), prior to the experiment, that the two-hose model was superior to the one-hose model. Even after running a controlled experiment that demonstrated that both A/Cs were able to cool your apartment to a comfortable temperature, you described the one-hose model as “very shitty,” showing that even this experiment was not powerful enough to convince you that both models would suit your needs just fine. Because it’s so obvious to you that two-hose A/Cs are superior to one-hose A/Cs, you’ll probably unnecessarily overpay for the two-hose model the next time you need an A/C.
Overall, we have another datapoint of a consumer projected to make a suboptimal purchasing decision, based on an inaccurate view of his own needs and the capabilities of the options on the market. This is exactly what you were worried about before you began the experiment, and so in this sense, the overall evidence provided by this scenario supports your conclusion about “form over substance” even more perhaps than it would have if the one-hose unit hadn’t cooled your apartment effectively.
At the heart of many such complex A/C purchasing decisions, the market is recognizing a simple truth: customers are split on whether they want a cheaper one-hose or a more expensive two-hose unit. The market therefore supplies both. People who buy a model that breaks too quickly or doesn’t cool effectively either return or replace their model with a different one, and move on to more important issues. This is a system that gets almost everybody what they need at a reasonable cost, without anybody having to think too hard about it.
That said, there are all kinds of other issues with the market that parallel the Potemkin Village and Godzilla metaphores that we’re trying to articulate when we try to find metaphores for AI risk in the human world. Climate change and war are two obvious examples. We ge the illusion of free choice and private property, but actually pump out all kinds of pollution that harms other people without their consent. We see big powerful states putting disfavored minority groups in concentration camps, with zero effective resistance. Even if we don’t worry about AGI, a garden variety that helps misaligned human agents do misaligned things better can help polluters profit from pollution and oppressors oppress more effectively. That harm can compound through the whole progression of AI to AGI.
Maybe the right move is to convince people that “alignment” is a broader issue than just AI, but that AI alignment is a key part of it. Government alignment, economic alignment, cultural alignment: these are framings that could be powerful, and more resonant and familiar, and be good ways to explain the issue and garner support. I wonder what would happen if we expanded on them?
We can even consider the proposed plan (add a 2nd hose and increase the price by $20) in the context of an actual company.
The proposed plan does not actually redesign the AC unit around the fact that we now have 2 hoses. It is “just” adding an additional hose.
Let’s assume that the distribution of AC unit cooling effectively looks something like this graphic that I made in 3 seconds.
In this image, we are choosing to assume that yes, in fact, 2-hose units are more efficient on average than a 1-hose unit. We are also recognizing that perhaps there is some overlap. Perhaps there are especially bad 2-hose units, and especially good 1-hose units.
Based on all of the evidence, I’m going to say that the average 1-hose unit does represent the minimum efficiency needed for cooling in an average consumer’s use-case—i.e. it is sufficient for their needs.
When I consider what would make a 2-hose unit good or bad, I suspect it has a lot to do with how much of the design is built around the fact that there are 2-hoses.
In your proposal, we simply add a 2nd hose to a unit that was otherwise designed functionally as a 1-hose unit. Let’s consider where that might be plotted on this graph.
I’m going to claim based on vague engineering intuition / judgment / experience that it goes right here.
If I am right about where this proposal falls against the competition, then here’s what we’ve done:
This is not a 1-hose unit any more. Despite it being more efficient than the average 1-hose units, and only slightly more expensive, consumers looking at 1-hose units (because they are concerned about cost) will not see this model. The argument that it is “only $20 more expensive” is irrelevant. Their search results are filtered, they read online that they wanted a one-hose unit, this product has been removed from their consideration.
This is a bad 2-hose unit. It is at the bottom of the efficiency scale, because other 2-hose units were actually designed to take full advantage of the 2-hoses. They will beat you on efficiency, even if they cost more. Wirecutter will list this in the “also ran” when discussing 2-hose units, “So and so sells a 2-hose model, but it was barely more efficient than a 1-hose, we cannot recommend it”.
A consumer looking at 2-hose units is already selecting for efficiency over cost, so they will not buy the “just add another hose” 2-hose unit, since it is on the wrong end of the 2-hose distribution.
You will acquire a reputation as the company that sells “cheap” products—your unit is cheaper than other 2-hose units, but isn’t better because it wasn’t designed as a 2-hose unit, and it was torn apart by reviewers.
Fixing this inefficiency requires actually designing around 2-hoses, which likely results in something like this
“Minimum viable”, in the context of a “minimum viable product” or MVP, is a term in engineering that represents the minimal thing that a consumer will pay to acquire. This is a product that can actually be sold. It’s not the literal worst in its category, and it has a clear supremacy over cheaper categories. This is also called table stakes. Reviewers will consider it fairly, consumers will not rage review it, etc.
However, it’s probably also a lot more expensive than the hypothetical “only $20 more” that has been repeatedly stated.
Even in the scenario where a reviewer does consider the “just add another hose” model when viewing one-hose units, we’ve already established that the one-hose unit is cheaper (by $20! if it’s a $200 unit, that’s 10%), and that the average 1-hose unit is sufficient for some average use-case. Therefore the rational consumer choice is to buy the cheaper one-hose anyway, because it’s irrational to pay more for efficiency that isn’t needed![1][2]
The exception here is some hypothetical consumer who knows, for a fact, that their unique situation requires a two-hose unit, e.g. they tried a one-hose unit already and it was insufficient.
There’s also an argument here that a rational option is to buy a 1-hose unit, and then if you need slightly more efficiency, just buy & wrap the 1-hose with insulation, as described here. This allows the consumer to purchase at the lower price point and then add efficiency if needed for the cost of the insulation. It’s unclear to me that the “just add another hose” AC would still perform better than an insulated 1-hose.
As a concrete example of rational one-hosing, here in the Netherlands it rarely gets hot enough that ACs are necessary, but when it does a bunch of elderly people die of heat stroke. Thus, ACs are expected to run only several days per year (so efficiency concerns are negligible), but having one can save your life.
I checked the biggest Dutch-only consumer-facing online retailer for various goods (bol.com). Unfortunately I looked before making a prediction for how many one-hose vs two-hose models they sell, but even conditional on me choosing to make a point of this, it still seems like it could be useful for readers to make a prediction at this point. Out of 694 models of air conditioner labeled as either one-hose or two-hose,
3
are two-hose.
This seems like strong evidence that the market successfully adapts to actual consumer needs where air conditioner hose count is concerned.
I must admit I was surprised by the statistics here. It is true if you only use the air conditioner few days a year, the energy efficiency is not important. However, the cooling capacity is important. I think many people are using efficiency to mean cooling capacity above. Anyway, let’s say the incremental cost of going from one hose to two hoses is $30. From working on Department of Energy energy efficiency rules, typically the marginal markup of an efficient product is less than the markup on the product overall (meaning that the incremental cost of just adding a hose is less than the $20 of buying it separately). It is true that with a smaller area for the air to come into the device with a hose, the velocity has to be higher, so the fan blades need to be made bigger (it typically is one motor powering two different fan blades on two sides, at least for window units). But then you could save money on the housing because the port is smaller. The incremental cost of motors is low. Then if the air conditioner cost $200 to start with, that would be 15% incremental cost. Then let’s say the cooling capacity increased by 25% (I would say it actually does matter that a T-shirt was used, which would allow room area and instead of just outdoor air, so it probably would be higher than this). What this means is that the two hose actually has greater cooling capacity per dollar, so you should choose a small two hose even if you don’t care about energy use at all. Strictly this is only true with no economies of scale, which is not a great assumption. But I think overall it will hold. Another case this would break down is if a person were plugging and unplugging many times, but I don’t think that’s the typical person. So I suspect what is going on is that people don’t realize that the cooling capacity of the one hose is actually reduced more than the cost, so they should just be getting a smaller capacity two hose unit (at lower initial cost and energy cost).
There is a broader question here of whether there should be energy efficiency regulations. If people were perfectly rational and had perfect information, we would not need them. But not only are the incremental costs of energy efficiency regulations found to be economically beneficial by the US Department of Energy (basically a good return on investment), but a retrospective study found that the actual incremental cost of meeting the efficiency regulations was about an order of magnitude lower than predicted by the Department of Energy! So I think there’s a very strong case for energy efficiency regulations.
“has greater cooling capacity per dollar”
For that one week of the year its very hot then any kind of air conditioner at all, even one with awful cooling power, is probably enough. If you can get a two-hose unit where the machinery is half the size of the 1-hose, and is proportionally cheaper then you should. But its worth remembering that the consumers know they are buying a piece of cheap junk: they intend to have it fan away at them for a week while they complain about how it never used to get this hot. Three years later there will be another heat wave, and (if they are anything like me) they will not be sure if they still have the air con they bought last time in their attic, or if they lost it in the house move. Or maybe it broke? So their is a very real chance that it is never being used again from 10 days after purchase: and the buyer knows that.
This is a great comment. The graphs helped a lot.
Obviously I disagree, but I’d still say that’s a pretty fair interpretation.
I just want to say that I found this comment personally helpful.
Something about this seems on point to me. Rationalists, in general, are much more likely to be mathematicians, than (for instance) mechanical engineers. It does seem right to me that when I look around, I see people drawn to abstract analyses, very plausibly at the expense of neglecting contextualized details that are crucial for making good calls. This seems like it could very well be a bias of my culture.
For instance, it’s fun and popular to talk about civilizational inadequacy, or how the world is mad. I think that is pointing at something true and important, but I wonder how much of that is basically overlooking the fact that it is hard to do things in the real world with a bunch of different stakeholders and a confusing mistakes.
In a lot of cases, civilizational inadequacy can be the result of engineers (broadly construed) who understand that “the perfect is the enemy of the good”, pushing projects through to completion anyway. The outcome is sometimes so muddled to be worse than having done nothing, but also, shipping things under constraints, even though they could be much better on some axes is how civilization runs.
Anyway, this makes me think that I should attempt to do more engineering projects, or otherwise find ways to operate in domains where the goal is to get “good enough”, within a bunch of not-always crisply-defined constraints.
First of all, I agree with the gist of your comment.
I...do not agree. I keep my room temperature 72-74.
Going from first four google results for “what is comfortable room temperature”:
WHO according to wikipedia: 64-75
www.cielowigle.com: 68-72
www.vivint.com: 68-76
www.provicincialheating.ca: 68-76
Seems like both of our preferred temperatures are consistent with “normal human being”.
I’ll edit the range, and note that “uncomfortably hot” is my opinion. Rest of my analysis / rant still applies. In fact, in your case, you don’t need need the AC unit at all, since you’d be fine with the control temperature.