Especially if it’s something as non-committal as “this mechanism could maybe matter”. Does that really invalidate the neuron doctrine?
I agree each of the “mechanisms that maybe matter” are tenuous by themselves, the argument I’m trying to make here is hits-based. There are so many mechanisms that maybe matter, the chances of one of them mattering in a relevant way is quite high.
I think your argument also has to establish that the cost of simulating any that happen to matter is also quite high.
My intuition is that capturing enough secondary mechanisms, in sufficient-but-abstracted detail that the simulated brain is behaviorally normal (e.g. a sim of me not-more-different than a very sleep-deprived me), is likely to be both feasible by your definition and sufficient for consciousness.
If I understand your point correctly, that’s what I try to establish here
the speed of propagation of ATP molecules (for example) is sensitive to a web of more physical factors like electromagnetic fields, ion channels, thermal fluctuations, etc. If we ignore all these contingencies, we lose causal closure again. If we include them, our mental software becomes even more complicated.
i.e., the cost becomes high because you need to keep including more and more elements of the dynamics.
I agree each of the “mechanisms that maybe matter” are tenuous by themselves, the argument I’m trying to make here is hits-based. There are so many mechanisms that maybe matter, the chances of one of them mattering in a relevant way is quite high.
I think your argument also has to establish that the cost of simulating any that happen to matter is also quite high.
My intuition is that capturing enough secondary mechanisms, in sufficient-but-abstracted detail that the simulated brain is behaviorally normal (e.g. a sim of me not-more-different than a very sleep-deprived me), is likely to be both feasible by your definition and sufficient for consciousness.
If I understand your point correctly, that’s what I try to establish here
i.e., the cost becomes high because you need to keep including more and more elements of the dynamics.