Shape can most certainly be emulated by a digital computer. The theory in the paper you linked would make a brain simulation easier, not harder, and the authors would agree with that (while saying their theory is miles off from a proposal to emulate the brain in depth).
And the paper very likely is on to something, but not quite what they’re talking about. fMRI analyses are notoriously noisy and speculative. Nobody talking about brain emulation talks about fMRI; it’s just too broad-scale to be helpful.
Shape can most certainly be emulated by a digital computer. The theory in the paper you linked would make a brain simulation easier, not harder, and the authors would agree with that
Would you bet on this claim? We could probably email James Pang to resolve a bet. (Edit: I put about 30% on Pang saying that it makes simulation easier, but not necessarily 70% on him saying it makes simulation harder, so I’d primarily be interested in a bet if “no idea” also counts as a win for me.)
Shape can most certainly be emulated by a digital computer. The theory in the paper you linked would make a brain simulation easier, not harder, and the authors would agree with that (while saying their theory is miles off from a proposal to emulate the brain in depth).
And the paper very likely is on to something, but not quite what they’re talking about. fMRI analyses are notoriously noisy and speculative. Nobody talking about brain emulation talks about fMRI; it’s just too broad-scale to be helpful.
Would you bet on this claim? We could probably email James Pang to resolve a bet. (Edit: I put about 30% on Pang saying that it makes simulation easier, but not necessarily 70% on him saying it makes simulation harder, so I’d primarily be interested in a bet if “no idea” also counts as a win for me.)