See wikipedia on natural generalizations of prime numbers. In particular note that most of the definitions say “units” instead of “1″, like “Irreducible elements are ones which cannot be written as a product of two ring elements that are not units.” which rules out 0 for the integers, +, x and includes the possibility of multiple units (-1 and 1).
I don’t know offhand of any nice, commonly referenced property P(S,O) that is: A,x,y in a structure S with operation O: A is P just when if x O y = A then either x = A or y = A. Which I believe is the general property you’re thinking about?
See wikipedia on natural generalizations of prime numbers. In particular note that most of the definitions say “units” instead of “1″, like “Irreducible elements are ones which cannot be written as a product of two ring elements that are not units.” which rules out 0 for the integers, +, x and includes the possibility of multiple units (-1 and 1).
I don’t know offhand of any nice, commonly referenced property P(S,O) that is: A,x,y in a structure S with operation O: A is P just when if x O y = A then either x = A or y = A. Which I believe is the general property you’re thinking about?
Edit: with O commutative I do believe
Thank you. And yes, that is the property.