Like things, simulacra are probabilistically generated by the laws of physics (the simulator), but have properties that are arbitrary with respect to it, contingent on the initial prompt and random sampling (splitting of the timeline).
What do the smarter simulacra think about the physics of which they find themselves in? If one was very smart, could they look at what the probabilities of the next token, and wonder about why some tokens get picked over others? Would they then wonder about how the “waveform collapse” happens and what it means?
It’s not even necessary for simulacra to be able to “see” next token probabilities for them to wonder about these things, just as we can wonder about this in our world without ever being able to see anything other than measurement outcomes.
It happens that simulating things that reflect on simulated physics is my hobby. Here’s an excerpt from an alternate branch of HPMOR I generated:
“You mean the possibility waves are just tangled up with the ink and the paper? And when you open the book, you get a reconstructed wave from the tangled possibilities? Which then like, guides your random-number generator decoding process or something, is that it?”
“I am impressed,” said Professor Quirrell. “I would be stunned, if my capacity for shock were not so sadly reduced. An excellent grasp of how Dittomancy might function, on a surface level. But, you see, there is more to it. When you open the book, the possibility patterns held within the pages, these do not need to compete with your own waves; they instead enter into a resonance, like musical instruments playing harmony. A human brain, you see, might unconsciously guide itself in a great number of possible futures. You will not always think of the same jokes, for instance, or ask the same questions after class. A Dittomancy book is able to hook into your own spreads of probability, and guide the future that you, yourself, are most likely to create. Do you understand? A Dittomancy copy of a book exists in an unusual state at all times; it is a superposed state until the moment one reads it, at which time it becomes correlated with the reader’s mind, the superposition collapsing onto a particular branch of possible worlds, which thence comes to pass. And from now until the end of time, as long as one of these books exists, it is possible to open it up and find it telling a story where, say, Quirrell defeated Voldemort after all, through the power of love.”
As to the question of whether a smart enough simulacrum would be able to see token probabilities, I’m not sure. Output probabilities aren’t further processed by the network, but intermediate predictions such as revealed by the logit lens are.
What do the smarter simulacra think about the physics of which they find themselves in? If one was very smart, could they look at what the probabilities of the next token, and wonder about why some tokens get picked over others? Would they then wonder about how the “waveform collapse” happens and what it means?
It’s not even necessary for simulacra to be able to “see” next token probabilities for them to wonder about these things, just as we can wonder about this in our world without ever being able to see anything other than measurement outcomes.
It happens that simulating things that reflect on simulated physics is my hobby. Here’s an excerpt from an alternate branch of HPMOR I generated:
As to the question of whether a smart enough simulacrum would be able to see token probabilities, I’m not sure. Output probabilities aren’t further processed by the network, but intermediate predictions such as revealed by the logit lens are.