Thanks for the reply. I’m a bit over my head here but isn’t this a problem for the practicality of this approach? We only get mutual cooperation because all of the agents have the very unusual property that they’ll cooperative if they find a proof that there is no such argument. Seems like a selfless and self-destructive property to have in most contexts, why would an agent self-modify into creating and maintaining this property?
Hm. I’m going to take a step back, away from the math, and see if that makes things less confusing.
Let’s go back to Alice thinking about whether to cooperate with Bob. They both have perfect models of each other (perhaps in the form of source code).
When Alice goes to think about what Bob will do, maybe she sees that Bob’s decision depends on what he thinks Alice will do.
At this junction, I don’t want Alice to “recurse”, falling down the rabbit hole of “Alice thinking about Bob thinking about Alice thinking about—” and etc.
Instead Alice should realize that she has a choice to make, about who she cooperates with, which will determine the answers Bob finds when thinking about her.
This manouvre is doing a kind of causal surgery / counterfactual-taking. It cuts the loop by identifying “what Bob thinks about Alice” as a node under Alice’s control. This is the heart of it, and imo doesn’t rely on anything weird or unusual.
I tried to formalize this, using A→B as a “poor man’s counterfactual”, standing in for “if Alice cooperates then so does Bob”. This has the odd behaviour of becoming “true” when Alice defects! You can see this as the counterfactual collapsing and becoming inconsistent, because its premise is violated. But this does mean we need to be careful about using these.
For technical reasons we upgrade to □A→B, which says “if Alice cooperates in a legible way, then Bob cooperates back”. Alice tries to prove this, and legibly cooperates if so.
This setup gives us “Alice legibly cooperates if she can prove that, if she legibly cooperates, Bob would cooperate back”. In symbols, □(□A→B)→A.
Now, is this okay? What about proving □A→⊥?
Well, actually you can’t ever prove that! Because of Lob’s theorem.
Outside the system we can definitely see cases where A is unprovable, e.g. because Bob always defects. But you can’t prove this inside the system. You can only prove things like “□kA→⊥” for finite proof lengths k.
I think this is best seen as a consequence of “with finite proof strength you can only deny proofs up to a limited size”.
So this construction works out, perhaps just because two different weirdnesses are canceling each other out. But in any case I think the underlying idea, “cooperate if choosing to do so leads to a good outcome”, is pretty trustworthy. It perhaps deserves to be cached out in better provability math.
Thanks for the reply. I’m a bit over my head here but isn’t this a problem for the practicality of this approach? We only get mutual cooperation because all of the agents have the very unusual property that they’ll cooperative if they find a proof that there is no such argument. Seems like a selfless and self-destructive property to have in most contexts, why would an agent self-modify into creating and maintaining this property?
(Thanks also to you for engaging!)
Hm. I’m going to take a step back, away from the math, and see if that makes things less confusing.
Let’s go back to Alice thinking about whether to cooperate with Bob. They both have perfect models of each other (perhaps in the form of source code).
When Alice goes to think about what Bob will do, maybe she sees that Bob’s decision depends on what he thinks Alice will do.
At this junction, I don’t want Alice to “recurse”, falling down the rabbit hole of “Alice thinking about Bob thinking about Alice thinking about—” and etc.
Instead Alice should realize that she has a choice to make, about who she cooperates with, which will determine the answers Bob finds when thinking about her.
This manouvre is doing a kind of causal surgery / counterfactual-taking. It cuts the loop by identifying “what Bob thinks about Alice” as a node under Alice’s control. This is the heart of it, and imo doesn’t rely on anything weird or unusual.
I tried to formalize this, using A→B as a “poor man’s counterfactual”, standing in for “if Alice cooperates then so does Bob”. This has the odd behaviour of becoming “true” when Alice defects! You can see this as the counterfactual collapsing and becoming inconsistent, because its premise is violated. But this does mean we need to be careful about using these.
For technical reasons we upgrade to □A→B, which says “if Alice cooperates in a legible way, then Bob cooperates back”. Alice tries to prove this, and legibly cooperates if so.
This setup gives us “Alice legibly cooperates if she can prove that, if she legibly cooperates, Bob would cooperate back”. In symbols, □(□A→B)→A.
Now, is this okay? What about proving □A→⊥?
Well, actually you can’t ever prove that! Because of Lob’s theorem.
Outside the system we can definitely see cases where A is unprovable, e.g. because Bob always defects. But you can’t prove this inside the system. You can only prove things like “□kA→⊥” for finite proof lengths k.
I think this is best seen as a consequence of “with finite proof strength you can only deny proofs up to a limited size”.
So this construction works out, perhaps just because two different weirdnesses are canceling each other out. But in any case I think the underlying idea, “cooperate if choosing to do so leads to a good outcome”, is pretty trustworthy. It perhaps deserves to be cached out in better provability math.