Also it’s unclear to me what the connection is between this part and the second.
My bad, I did a poor job explaining that. The first part is about the problems of using generic words (evolution) with fuzzy decompositions (mates, predators, etc) to come to conclusions, which can often be incorrect. The second part is about decomposing those generic words into their implied structure, and matching that structure to problems in order to get a more reliable fit.
I don’t believe that “I don’t know” is a good answer, even if it’s often the correct one. People have vague intuitions regarding phenomena, and wouldn’t it be nice if they could apply those intuitions reliably? That requires a mapping from the intuition (evolution is responsible) to the problem, and the mapping can only be made reliable once the intuition has been properly decomposed into its implied structure, and even then, only if the mapping is based on the decomposition.
I started off by trying to explain all of that, but realized that there is far too much when starting from scratch. Maybe someday I’ll be able to write that post...
It can make sense to say that a utility function is bounded, but that implies certain other restrictions. For example, bounded utility functions cannot be decomposed into independent (additive or multiplicative, these are the only two options) subcomponents if the number of subcomponents is unknown. Any utility function that is summed or multiplied over an unknown number of independent (e.g.) societies must be unbounded*. Does that mean you believe that utility functions can’t be aggregated over independent societies or that no two societies can contribute independently to the utility function? That latter implies that a utility function cannot be determined without knowing about all societies, which would make the concept useless. Do you believe that utility functions can be aggregated at all beyond the individual level?
Keep in mind that “unbounded” here means “arbitrarily additive”. In the multiplicative case, even if a utility function is always less than 1, if an individual’s utility can be made arbitrarily close to 0, then it’s still unbounded. Such an individual still has enough to gain by betting on a trillion coin tosses.
You mentioned that a utility function should be seen as a proxy to decision making. If decisions can be independent, then their contributions to the definition of a utility function must be independent*. If the utility function is bounded, then the number of independent decisions something can decide between must also be bounded. Maybe that makes sense for individuals since you distinguished a utility function as a summary of “current” decision-making, and any individual is presumably limited in their ability to decide between independent outcomes at any given point in time. Again, though, this causes problems for aggregate utility functions.
Consider the functor F that takes any set of decisions (with inclusion maps between them) to the least-assuming utility function consistent with them. There exists a functor G that takes any utility function to the maximal set of decisions derivable from it. F,G together form a contravariant adjunction between set of decisions and utility functions. F is then left-adjoint to G. Therefore F preserves finite coproducts as finite products. Therefore for any disjoint union of decisions A,B, the least-assuming utility function defined over them exists and is F(A+B)=F(A)*F(B). The proof is nearly identical for covariant adjunctions.
It seems like nonsense to say that utility functions can’t be aggregated. A model of arbitrary decision making shouldn’t suddenly become impossible just because you’re trying to model, say, three individuals rather than one. The aggregate has preferential decision making just like the individual.