We tried using (1) subjectivity (based on simple bag-of-words), and (2) zero-shot text classification (NLI-based) to help us sift through the years of tweets in search for bold claims. (1) seemed a pretty poor heuristic overall, and (2) was still super noisy (e.g. It would identify “that’s awesome” as a bold claim, not particularly useful). The second problem was that even if tweets were identified as containing bold claims, those were often heavily contextualized in a reply thread, and so we tried decontextualizing those manually to increase the signal-to-noise ratio. Also, we were initially really confident that we’d use our automatic negation pipeline (i.e. few-shot prompt + DALL-E-like reranking of generations based on detected contradictions and minimal token edit distance), though in reality it would take way way longer than manual labeling given our non-existent infra.
I agree that all those manual steps are huge sources of experimenter bias, though. Doing it the way you suggested would improve replicability, but also increase noise and compute demands.
Thanks for the pointer to the paper, saved for later! I think this task of crafting machine-readable representations of human values is a thorny step in any CEV-like/value-loading proposal which doesn’t involve the AI inferring them itself IRL-style.
I was considering sifting through literature to form a model of ways people tried to do this in an abstract sense. Like, some approaches aim at a fixed normative framework. Others involve an uncertain seed which is collapsed to a likely framework. Others involve extrapolating from fixed to an uncertain distribution of possible places an initial framework drifted towards. Does this happen to ring a bell about any other references?