To pick a frequentist algorithm is to pick a prior with a set of hypotheses, i.e. to make Bayes’ Theorem computable and provide the unknowns on the r.h.s. above (as mentioned earlier you can in theory extract the prior and set of hypotheses from an algorithm by considering which outcome your algorithm would give when it saw a certain set of data, and then inverting Bayes’ Theorem to find the unknowns.
Okay, this is the last thing I’ll say here until/unless you engage with the Robins and Wasserman post that IlyaShpitser and I have been suggesting you look at. You can indeed pick a prior and hypotheses (and I guess a way to go from posterior to point estimation, e.g., MAP, posterior mean, etc.) so that your Bayesian procedure does the same thing as your non-Bayesian procedure for any realization of the data. The problem is that in the Robins-Ritov example, your prior may need to depend on the data to do this! Mechanically, this is no problem; philosophically, you’re updating on the data twice and it’s hard to argue that doing this is unproblematic. In other situations, you may need to do other unsavory things with your prior. If the non-Bayesian procedure that works well looks like a Bayesian procedure that makes insane assumptions, why should we look to Bayesian as a foundation for statistics?
(I may be willing to bite the bullet of poor frequentist performance in some cases for philosophical purity, but I damn well want to make sure I understand what I’m giving up. It is supremely dishonest to pretend there’s no trade-off present in this situation. And a Bayes-first education doesn’t even give you the concepts to see what you gain and what you lose by being a Bayesian.)
While maybe not essential, the “anti-” aspect of the correlations induced by anthropic selection bias at least seems important. Obviously, the appropriate changes of variables can make any particular correlation go either positive or negative. But when the events all measure the same sort of thing (e.g., flooding in 2014, flooding in 2015, etc.), the selection bias seems like it would manifest as anti-correlation. Stretching an analogy beyond its breaking point, I can imagine these strange anti-correlations inducing something like anti-ferromagnetism.