“MWI having a fixed phase space that doesn’t actually increase in size over time.”
(1) That assumes we are already simulating the entire universe from the Big Bang forward, which is already preposterously infeasible (not to mention that we don’t know the starting state).
(2) It doesn’t model the central events in QM, namely the nondeterministic events which in MWI are interpreted as which “world” we “find ourselves” in.
Of course in real QM work simulations are what they are, independently of interpretations, they evolve the wavefunction, or a computationally more efficient but less accurate version of same, to the desired elaboration (which is radically different for different applications). For output they often either graph the whole wavefunction (relying on the viewer of the graph to understand that such a graph corresponds to the results of a very large number of repeated experiments, not to a particular observable outcome) or do a Monte Carlo or Markov simulation of the nondeterministic events which are central to QM. But I’ve never seen a Monte Carlo or Markov simulation of QM that simulates the events that supposedly occur in “other worlds” that we can never observe—it would indeed be exponentially (at least) more wasteful in time and memory, yet utterly pointless, for the same reasons that the interpretation itself is wasteful and pointless. You’d think that a good interpretation, even if it can’t produce any novel experimental predictions, could at least provide ideas for more efficient modeling of the theory, but MWI suggests quite the opposite, gratuitously inefficient ways to simulate a theory that is already extraordinarily expensive to simulate.
Objective collapse, OTOH, continually prunes the possibilities of the phase space and thus suggests exponential improvements in simulation time and memory usage. Indeed, some versions of objective collapse are bone fide new theories of QM, making experimental predictions that distinguish it from the model of perpetual elaboration of a wavefunction. Penrose for example bases his theory on a quantum gravity theory and several experiments have been proposed to test his theory.
BTW, it’s MWI that adds extra postulates. In both MWI and collapse, parts of the wavefunction effectively disappear from the observable universe (or as MWI folks like to say “the world I find myself in.”) MWI adds the extra and completely gratuitous postulate that this portion of the wave function magically re-appears in another, imaginary, completely unobservable “world”, on top of the gratuitous extra postulate that these new worlds are magically created, and all of us magically cloned, such that the copy of myself I experience finds me in one “world” but not another. And all that just to explain why we observe a nondeterministic event, one random eigenstate out of the infinity of eigenstates derived from the wavefunction and operator, instead of observing all of them.
Why not just admit that quantum events are objectively nondeterministic and be done with it? What’s so hard about that?