Thanks for your comments!
My sense you are writing this as someone without lots of experience in writing and publishing scientific articles (correct me if I am wrong).
You’re correct in that I haven’t published any scientific articles—my publication experience is entirely in academic philosophy and my suggestions are based on my frustrations there. This may be a much more reasonable proposal for academic philosophy than other disciplines, since philosophy deals more with conceptually nebulous issues and has fewer objective standards.
linearly presenting ideas on paper—“writing”—is a form of extended creative cognitive creation that is difficult to replicate
I agree that writing is a useful exercise for thinking. I’m not so sure that it is difficult to replicate, or that the forms of writing for publication are the best ways of thinking. I think getting feedback on your work is also very important, and something that would be easier, faster, working with an avatar. So part of the process of training an avatar might be sketching an argument in a rough written form and then answering a lot of questions about it. That isn’t obviously a worse way to think through issues than writing linearly for publication.
My other comment is that most of the advantages can be gained by AI interpretations and re-imagining of a text e.g. you can ask ChatGPT to take a paper and explain it in more detail by expanding points, or make it simpler.
This could probably get a lot of the same advantages. Maybe the ideal is to have people write extremely long papers that LLMs condense for different readers. My thought was that at least as papers are currently written, some important details are generally left out. This means that arguments require some creative interpretation on the part of a serious reader.
The interesting question for me though which is what might be the optimal publication format to allow LLM’s to progress science
I’ve been thinking about these issues in part in connection with how to use LLMs to make progress in philosophy. This seems less clear cut than science, where there are at least processes for verifying which results are correct. You can train AIs to prove mathematical theorems. You might be able to train an AI to design physics experiments and interpret the data from them. Philosophy, in contrast, comes down more to formulating ideas and considerations that people find compelling; it is possible that LLMs could write pretty convincing articles with all manners of conclusions. It is harder to know how to pick out the ones that are correct.
This is a very interesting change (?) from earlier models. I wonder if this is a poetry-specific mechanism given the amount of poetry in the training set, or the application of a more general capability. Do you have any thoughts either way?