I think when people discuss Moore’s Law slowing, they are usually discussing transistor density on a 2D board rather than transistor count.
The radius of a silicon atom is ~0.2nm, and transistors are currently at the 5nm scale commercially. Since transistors (with current designs) need to be made out of at least one silicon atom, there’s only log2(5/0.2) = ~4 possible 1D-halvings, or ~16 2D-halvings left before we’re hitting the floor of physical possibility. That’s ignoring quantum effects which make it difficult to achieve reasonable commercial yield—which is the issue that companies are struggling with.
I think when people discuss Moore’s Law slowing, they are usually discussing transistor density on a 2D board rather than transistor count.
The radius of a silicon atom is ~0.2nm, and transistors are currently at the 5nm scale commercially. Since transistors (with current designs) need to be made out of at least one silicon atom, there’s only log2(5/0.2) = ~4 possible 1D-halvings, or ~16 2D-halvings left before we’re hitting the floor of physical possibility. That’s ignoring quantum effects which make it difficult to achieve reasonable commercial yield—which is the issue that companies are struggling with.