Dialethists requires paraconsistent logic, as you have to be able to reason in the presence of contradictions, but paraconsitent logic can be used to model other things than truth. For example, constructive logic is often given the semantics of showing what statements can be proven, rather than what statements are true. There are similar interpretations for paraconsistent logic.
OTOH, if you think that paraconsistent logic is the correct logic for truth, then you probably do have to be a dialethist.
Constructivist logic works great if you interpret it as saying which statements can be proven, or computed, but I would say it doesn’t hold up when interpreted as showing which statements are true (given your axioms). It’s therefore not really appropriate for mathematics, unless you want to look at mathematics in the light of its computational or proof-theoretic properties.