“1 What is “formalism”? ”
“I think it isn’t, because positions like F1 and F2 involve such assumptions and aren’t made untenable by the incompleteness theorems ”
I think it’s ironic that you’re arguing with me over the meaning of a word, considering the content of my essay. I stated at the begining of my essay what I meant by “formalism”. If you don’t think that word should be used that way, that’s fine, but I’m not interested in arguing about the meaning of a word. By pretending that I’m arguing against any and all forms of what may be called formalism, you are replacing what I actually said with something else. That’s not a substantive disagreement with any position I actually endorsed.
“F1: The idea that we should pick some single formal system [...] ”
In my original quote I said “has” for a very specific reason. “Should” is a matter of opinion. I don’t think it’s unreasonable to choose a safe window from which to study the universe of mathematics, but one shouldn’t speak as if that window is the universe itself.
“I don’t think “many people seem to think [...]”
When someone states something of the form “mathematics turns out to be incomplete” they are ascribing properties of a formal logic to mathematics. When someone states that mathematics is an activity involving, on occasion, a decision “to switch to a different formal foundation”, they are ascribing properties of an activity which do not hold for formal logics. This is the central contradiction I’m fixating on. When I say “many people seem to think” I don’t mean that many people explicitly endorse, but rather that many people implicitly think of mathematics as a formal system. Saying “mathematics is incomplete” is a form of synecdoche, saying “mathematics” but meaning only a part of it. Failure to realize that this is being done leads people to say silly things.
″ F2: The idea that mathematics is the study of formal systems ”
“making that choice isn’t mathematics ”
A field of study can’t be incomplete in the way a formal logic can. Saying “mathematics is incomplete” is incompatible with the view that mathematics is a field of study, and yet I’ve seen many people endorse such a view. If you say that mathematics is the study of formal systems, I’d say that’s wrong, but that’s not relevant to any of my earlier points.
I think this might actually be the main point of disagreement. Making that choice involves mathematical reasoning and intuition which is certainly part of mathematics, not least because it’s part of what mathematicians, in particular, actually do. Excluding such things from being mathematics is arbitrary and artificial. If you’re going to make such a designation, then it seems the ultimate goal is to make mathematics mean “the study of formal systems”, but I have no interest in talking about such a thing. This is, again, arguing over a definition.
Incidentally, I stated that the position which was untenable after Gödel’s Incompleteness Theorems is the assumption, implicit in the statement “mathematics is incomplete”, that mathematics is a formal logic. However, that doesn’t appear as either your F0, F1, or F2.
I’ve found this discussion to largely be a waste of time. I won’t be responding beyond this point.
My goal is mostly to collect my understanding of mathematics into some coherent collection that people can read. Mostly, I just want to expose people to an alternative way of thinking, as I’ve seen people from this community say things that rely on a narrow view of foundations. My plan for the series is not to be especially philosophical. The first post consists only of things which I think are obvious. As far as I can tell, the main reason people thought it might have been controversial is that they didn’t understand what I was getting at in the first place.
The content of this post is actually the meat of my series. I don’t think the philosophical discussion has much practical significance beyond settling one’s mind. I’m far more interested in doing mathematics than talking about the doing of mathematics.
I will eventually write a post pertaining to truth-maker semantics, and I’ll revisit some of the content from my first post then, but I wouldn’t consider the content of the first post central, or even all that necessary, for the series.