Free group

WikiLast edit: Oct 24, 2016, 1:22 AM by Patrick Stevens

Intuitively, the free group on the set is the group whose elements are the freely reduced words over , and whose group operation is “concatenation followed by free reduction”.

The free group can be constructed rigorously in several equivalent ways, some of which are easy to construct but hard to understand, and some of which are intuitive but rather hard to define properly. Our formal construction (detailed on the Formal Definition lens) will be one of the more opaque definitions; there, we eventually show that the formal construction yields a group which is isomorphic to the intuitive version, and this will prove that the intuitive version does in fact define a group with the right properties for the free group.

Intuitive definition

Given a set , the free group (or ) on has:

Example

The free group on the set contains the following elements (among others):

(From now on, we will only use the common shorthand to denote words, except in cases where this interferes with something else we’re doing.)

Some things which the same free group does not contain are:

Some examples of this group’s group operation (which we will write as ) in action are:

Examples

Why are the free groups important?

It is a fact that every group is a quotient of a free group. Therefore the free groups can be considered as a kind of collection of “base groups” from which all other groups can be made as quotients. This idea is made more concrete by the idea of the group presentation, which is a notation that specifies a group as a quotient of a free group. [3]

Free groups “have no more relations than they are forced to have”

The crux of the idea of the group presentation is that the free group is the group we get when we take all the elements of the set as elements which “generate” our putative group, and then throw in every possible combination of those “generators” so as to complete it into a bona fide group. We explain why the free group is (informally) a “pure” way of doing this, by walking through an example.

Example

If we want a group which contains the elements of , then what we could do is make it into the cyclic group on the two elements, , by insisting that be the identity of the group and that . However, this is a very ad-hoc, “non-pure” way of making a group out of . [4] It adds the “relation” which wasn’t there before.

Instead, we might make the free group by taking the two elements , and throwing in everything we are forced to make if no non-trivial combination is the identity. For example:

  • we have no reason to suspect that either or is already the identity, so we must throw in an identity which we will label ;

  • we have no reason to suspect that should be equal to or to or to , so we must throw in an element equal to which we will label ;

  • we do have a reason to suspect that is already in the group (because it “ought to be” the identity ), so we don’t throw in the element ;

  • and so on through all the words, such as and so forth.

This way adds an awfully large number of elements, but it doesn’t require us to impose any arbitrary relations.

Universal property of the free group

The free group has a universal property, letting us view groups from the viewpoint of category theory. Together with the idea of the quotient (which can be formulated in category theory as the coequaliser) and the subsequent idea of the group presentation, this lets us construct any group in a category-theoretic way.

Indeed, every group has a presentation say, which expresses as a quotient (i.e. a certain coequaliser) of the free group . We can construct through the universal property, so we no longer need to say anything at all about the elements or group operation of to define it.

Properties

Proof that “the rationals under addition” is torsion-free but not free

Suppose the order of an element were finite and equal to , say. Then , times, would yield (the identity of ). But that would mean , and so or ; since already, we must have , so is the identity after all.

The group is not free: suppose it were free. It is abelian, so it must be isomorphic to either the trivial group (clearly not: is infinite but the trivial group isn’t) or . It’s not isomorphic to , though, because is cyclic: there is a “generating” element such that every element of can be made by adding together (possibly negatively-many) copies of . doesn’t have this property, because if were our attempt at such a generating element, then could not be made, so couldn’t actually be generating after all.

  1. ^︎
  2. ^︎

    This trick is extremely useful in determining whether a set is countable, and you should go over it until you are sure you understand it.

  3. ^︎

    Although it’s not usually presented in this way at first, because the notation has a fairly intuitive meaning on its own.

  4. ^︎

    For those who are looking out for that sort of thing, to do this in generality will require heavy use of the axiom of choice.

  5. ^︎

    To be completely precise about this, using the formal definition, because they have different effects when applied to the empty word . One produces ; the other produces .

  6. ^︎

    “Torsion-free” means “free of torsion”, where the word “free” is nothing to do with “free group”.