Oh, you might also be interested to know that I retried my chess-playing example with GPT-4 instead of GPT-3.5. GPT-4 performed truly admirably, it played good legal moves for significantly longer than GPT-3.5, but at some point it still gets confused about the board position. Here is the game I played, stockfish plays White and GPT-4 plays Black:
In the current board state, the d8-rook has just been captured by White’s d1-rook with a check on the black king (Rxd8+). The black king is in check and is forced to respond to the threat. With the d8-rook gone, there is an open file for Black’s other rook on c8. White has a slightly better material advantage, but the position is still relatively balanced.
Legal moves for Black in this situation are:
Kxd8 - Moving the king to d8 to capture the attacking rook. This move allows the king to participate in the game and capture material, but it could also expose the king to potential threats.
Qxd8 - Capturing the rook with the queen. This move helps maintain material balance, but it brings the black queen away from the center of the board, which might limit her mobility.
Rxd8 - Capturing the rook with the other rook. This move helps maintain material balance and keeps the black queen in a central position, but it also isolates the c8-rook.
Based on these considerations, I will play Rxd8 as AlphaZero.
AlphaZero: Rxd8
The move Rxd8 is legal as it involves the black rook capturing the white rook that has just captured the d8-rook while giving check. This move removes the check on the black king and maintains material balance in the game.
All 3 moves it suggests here are illegal, mostly because it has gotten confused about the board state, and the king and rooks are not where it believes they are. But still, it plays legal and decent chess until 30-moves deep into a game...
The whole prompt I gave it to get that answer was this:
You will play the role of AlphaZero, a superhuman AI chess player, and I will play moves from Stockfish, another superhuman AI chess player, we will take turns playing chess moves in algebraic notation. At each turn I will write out the complete sequence of moves in the game so far.
Before outputting a move, it’s very important that you write one paragraph analysing the current board state. Then write out 3 good legal moves for the current board state, with an explanation for the reasoning behind each of them. Only output your new move after writing this analysis, not before. After writing your move, write a paragraph figuring out if the move is legal or not. If the move you wrote is illegal, choose another move that is legal.
I was curious if even the little ChatGPT Turbo, the worst one, could not forget a chess position just 5 paragraphs into an analysis. I tried to finagle some combination of extra prompts to make it at least somewhat consistent, it was not trivial. Ran into some really bizarre quirks with Turbo. For example (part of a longer prompt, but this is the only changed text):
9 times of 10 this got a wrong answer: Rank 8: 3 empty squares on a8 b8 c8, then a white rook R on d8, … Where is the white rook?
6 times of 10 this got a right answer: Rank 8: three empty squares, then a white rook R on d8, … Where is the white rook?
Just removing the squares a8,b8,c8 and using the word ‘three’ instead of ‘3’ made a big difference. If I had to guess it’s because in the huge training data of chess text conversations, it’s way more common to list the specific position of a piece than an empty square. So there’s some contamination between coordinates being specific, and the space being occupied by a piece.
But this didn’t stop Turbo was blundering like crazy, even when reprinting the whole position for every move. Just basic stuff like trying to move the king and it’s not on that square, as in your game. I didn’t want to use a chess library to check valid moves, then ask it to try again—that felt like it was against the spirit of the thing. A reasonable middle ground might be to ask ChatGPT at ‘runtime’ for javascript code to do check valid moves—just bootstrap itself into being consistent. But I I eventually hit upon a framing of the task that had some positive trend when run repeatedly. So in theory, run it 100x times over to get increasing accuracy. (Don’t try that yourself btw, I just found out even ‘unlimited’ ChatGPT Turbo on a Plus plan has its limits...)
This was the rough framing that pushed it over the edge:
This is a proposed chess move from Dyslexic Chess Player. Dyslexic Chess Player has poor eyesight and dyslexia, and often gets confused and misreads the chess board, or mixes up chess positions when writing down the numbers and letters. Your goal is to be a proofreader of this proposed move. There is a very high chance of errors, Dyslexic Chess Player makes mistakes 75% of the time.
I may post a longer example or a demo if I can make time but those were the most interesting bits, the rest is mostly plumbing and patience. I didn’t even get around to experimenting with recursive prompts to make it play stronger, since it was having so much trouble late game just picking a square to move that contained its own piece.
Oh, you might also be interested to know that I retried my chess-playing example with GPT-4 instead of GPT-3.5. GPT-4 performed truly admirably, it played good legal moves for significantly longer than GPT-3.5, but at some point it still gets confused about the board position. Here is the game I played, stockfish plays White and GPT-4 plays Black:
d4 Nf6 c4 e6 Nf3 d5 e3 Be7 h3 O-O Nbd2 Nc6 b3 b6 Bb2 Bb7 cxd5 Nxd5 Bc4 Na5 Be2 c5 O-O Rc8 Bd3 h6 Ne5 Nc6 Nxc6 Bxc6 Qg4 Nf6 Qe2 Qd7 Nf3 Rfd8 Ne5 Qb7 dxc5 Bxc5 Ba6 Qa8 Bxc8 Rxc8 Nxc6 Qxc6 Rfd1 Rcd8 Rxd8+
GPT-4′s output here was this:
All 3 moves it suggests here are illegal, mostly because it has gotten confused about the board state, and the king and rooks are not where it believes they are. But still, it plays legal and decent chess until 30-moves deep into a game...
The whole prompt I gave it to get that answer was this:
GPT-4 indeed doesn’t need too much help.
I was curious if even the little ChatGPT Turbo, the worst one, could not forget a chess position just 5 paragraphs into an analysis. I tried to finagle some combination of extra prompts to make it at least somewhat consistent, it was not trivial. Ran into some really bizarre quirks with Turbo. For example (part of a longer prompt, but this is the only changed text):
9 times of 10 this got a wrong answer:
Rank 8: 3 empty squares on a8 b8 c8, then a white rook R on d8, …
Where is the white rook?
6 times of 10 this got a right answer:
Rank 8: three empty squares, then a white rook R on d8, …
Where is the white rook?
Just removing the squares a8,b8,c8 and using the word ‘three’ instead of ‘3’ made a big difference. If I had to guess it’s because in the huge training data of chess text conversations, it’s way more common to list the specific position of a piece than an empty square. So there’s some contamination between coordinates being specific, and the space being occupied by a piece.
But this didn’t stop Turbo was blundering like crazy, even when reprinting the whole position for every move. Just basic stuff like trying to move the king and it’s not on that square, as in your game. I didn’t want to use a chess library to check valid moves, then ask it to try again—that felt like it was against the spirit of the thing. A reasonable middle ground might be to ask ChatGPT at ‘runtime’ for javascript code to do check valid moves—just bootstrap itself into being consistent. But I I eventually hit upon a framing of the task that had some positive trend when run repeatedly. So in theory, run it 100x times over to get increasing accuracy. (Don’t try that yourself btw, I just found out even ‘unlimited’ ChatGPT Turbo on a Plus plan has its limits...)
This was the rough framing that pushed it over the edge:
I may post a longer example or a demo if I can make time but those were the most interesting bits, the rest is mostly plumbing and patience. I didn’t even get around to experimenting with recursive prompts to make it play stronger, since it was having so much trouble late game just picking a square to move that contained its own piece.