Why stop at big numbers? Even the numbers you handle in everyday life might lead to a false statement, you are not logically omniscient and therefore wouldn’t necessarily know if they did. Why not be uncomfortable with everything?
Scenario 1: I have defined a sequence of numbers Xn, but these numbers are not computable. Nevertheless you give a proof that the limiting value of these numbers is 2, and then another, entirely different proof that the limiting value is 3. Therefore, 2 = 3. But since Xn is not computable, your proofs are necessarily non-constructive, so you haven’t given me a physical recipe for turning 2 quarters into 3 quarters. I would sooner say that you had proved something false, and re-examine some of your nonconstructive premises.
Scenario 2: You prove that 2 = 3 constructively. This means you have given me a recipe for turning 2 quarters into 3 quarters. I wouldn’t say you had proved something false but that you had discovered a new phenomenon, weird but true.
In both cases I would suspect my own mathematical ability, or even my sanity, before suspecting maths. Lcpwing those concerns away, I would observe that a certain set of statements had been proven not mutually consistent which in turn means they do not underpin our physics (granted this would be more surprising in one case than the other).
Something like Scenario 1 has already happened, with Russell’s paradox. People did not react by questioning their own sanity but by regarding Russell’s construction as “cheating”, and reconstituting the axioms so that Russell’s construction was forbidden.
We’re deep into insanity territory with Scenario 2, but people have speculated about such things here before.
I am fully aware of Russell’s paradox. I still think some sanity checks may be worthwhile, as the number of people who have thought they achieved scenario 1 but were in fact crackpots significantly exceeds one.
Why stop at big numbers? Even the numbers you handle in everyday life might lead to a false statement, you are not logically omniscient and therefore wouldn’t necessarily know if they did. Why not be uncomfortable with everything?
Scenario 1: I have defined a sequence of numbers Xn, but these numbers are not computable. Nevertheless you give a proof that the limiting value of these numbers is 2, and then another, entirely different proof that the limiting value is 3. Therefore, 2 = 3. But since Xn is not computable, your proofs are necessarily non-constructive, so you haven’t given me a physical recipe for turning 2 quarters into 3 quarters. I would sooner say that you had proved something false, and re-examine some of your nonconstructive premises.
Scenario 2: You prove that 2 = 3 constructively. This means you have given me a recipe for turning 2 quarters into 3 quarters. I wouldn’t say you had proved something false but that you had discovered a new phenomenon, weird but true.
In both cases I would suspect my own mathematical ability, or even my sanity, before suspecting maths. Lcpwing those concerns away, I would observe that a certain set of statements had been proven not mutually consistent which in turn means they do not underpin our physics (granted this would be more surprising in one case than the other).
Something like Scenario 1 has already happened, with Russell’s paradox. People did not react by questioning their own sanity but by regarding Russell’s construction as “cheating”, and reconstituting the axioms so that Russell’s construction was forbidden.
We’re deep into insanity territory with Scenario 2, but people have speculated about such things here before.
I am fully aware of Russell’s paradox. I still think some sanity checks may be worthwhile, as the number of people who have thought they achieved scenario 1 but were in fact crackpots significantly exceeds one.