“Do my ten fingers exist” is a hard question for reasons that are mostly orthogonal to what I think you intend to ask about 10^100. Let’s start by stipulating that zero exists, and that if a number n exists then so does n+1. Then by induction, you can easily prove that 10^100, 3^^^3 and worse exist. But this whole discussion boils down to whether we should trust induction.
It turns out that without induction, we can prove in less than a page that 10^100 and even 2^^5 = 2^(60000 or so) exists in my sense. In terms of cute ideas involved, if not in raw complexity, this is a somewhat nontrivial result. See pages 4 and 5 of the Nelson article I linked to earlier. One cannot prove that 3^^^3 exists, at any rate not with a proof of length much less than 3^^^3.
What I’ve called “existing numbers,” Nelson calls “counting numbers.” The essence of the proof is to first show that addition and multiplication are unproblematic in a regime without induction, and then to construct 2^^5 with a relatively small number of multiplications. But exponentiation is problematic in this regime, for the somewhat surprising reason that it’s not associative. It does not lend itself to iteration as well as multiplication does.
Edward Nelson has now announced a proof that Peano Arithmetic (and even the weaker Robinson Arithmetic) is inconsistent. His proof is not yet fully written up, but there’s an outline (see the previous link). Terry Tao (whose judgement I trust, since this goes beyond my expertise) reports on John Baez’s blog that he believes that he knows where a flaw is.
Edit: Terry and Nelson are now debating live on the blog!
Edit again: I should have reported long ago that Nelson has conceded defeat.
What I’ve called “existing numbers,” Nelson calls “counting numbers.”
Another term to search for is “feasible numbers”. There are several theories of these, and Nelson’s theory of countable (addable, multipliable, etc) numbers is yet another.
What about something like 10^100, i.e., something you could easily wright out in decimal but couldn’t count to?
“Do my ten fingers exist” is a hard question for reasons that are mostly orthogonal to what I think you intend to ask about 10^100. Let’s start by stipulating that zero exists, and that if a number n exists then so does n+1. Then by induction, you can easily prove that 10^100, 3^^^3 and worse exist. But this whole discussion boils down to whether we should trust induction.
It turns out that without induction, we can prove in less than a page that 10^100 and even 2^^5 = 2^(60000 or so) exists in my sense. In terms of cute ideas involved, if not in raw complexity, this is a somewhat nontrivial result. See pages 4 and 5 of the Nelson article I linked to earlier. One cannot prove that 3^^^3 exists, at any rate not with a proof of length much less than 3^^^3.
What I’ve called “existing numbers,” Nelson calls “counting numbers.” The essence of the proof is to first show that addition and multiplication are unproblematic in a regime without induction, and then to construct 2^^5 with a relatively small number of multiplications. But exponentiation is problematic in this regime, for the somewhat surprising reason that it’s not associative. It does not lend itself to iteration as well as multiplication does.
Edward Nelson has now announced a proof that Peano Arithmetic (and even the weaker Robinson Arithmetic) is inconsistent. His proof is not yet fully written up, but there’s an outline (see the previous link). Terry Tao (whose judgement I trust, since this goes beyond my expertise) reports on John Baez’s blog that he believes that he knows where a flaw is.
Edit: Terry and Nelson are now debating live on the blog!
Edit again: I should have reported long ago that Nelson has conceded defeat.
Another term to search for is “feasible numbers”. There are several theories of these, and Nelson’s theory of countable (addable, multipliable, etc) numbers is yet another.